[1] Tayal S., Nandi A., (2018), Performance analysis of junctionless DG-MOSFET based 6T SRAM with gate-stack configuration. Micro Nano Lett. 13: 838-841.
[2] Kuhn K. J., (2012), Consideration for ultimate CMOS scaling. IEEE Trans. Electron Dev. 59: 1813-1828.
[3] Zhang W., Fossum J. G., Mathew L., Du Y., (2005), Physical insights regarding design and performance of independent-gate FinFETs. IEEE Trans. Electron Dev. 52: 2198-2206.
[4] Tayal S., Nandi A., (2017), Analog/RF performance analysis of inner gate engineered junctionless Si nanotube. Superlatt. Microst. 111: 862-871.
[5] Interntional Technology Roadmap for Semiconductor (ITRS) for Radio Frequency and Analog/Mixed-signal Technologies. (2013), [Online]. Available: www.itrs.net.
[6] Mohapatra N. R., Desai M. P., Narendra S. G., Rao V. R., (2002), The effect of high-K gate dielectrics on deep sub-micrometer CMOS device and circuit performance. IEEE Trans. Electron Dev. 49: 826-831.
[7] Tayal S., Nandi A., (2017), Analog/RF performance analysis of channel engineered high-k gate-stack based junctionless trigate-FinFET. Superlatt. Microst. 112: 287-295.
[8] Momose H. S., Ono M., Yoshitomi T., Ohguro T., Nakamura S. I., Saito M., Iwai H., (1996), 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans. Electron Dev. 43: 1233-1242.
[9] Tayal S., Nandi A., (2017), Study of 6T SRAM cell using high-k gate dielectric based junctionless silicon nanotube FET. Superlatt. Microst. 112: 143-150.
[10] Ribes G., Mitard J., Denais M., Bruyere S., Monsieur F., Parthasarathy C., Vincent E., Ghibaudo G., (2005), Review on high-K dielectrics reliability issues. IEEE Trans. Dev. Mater. Reliab. 5: 5-19.
[11] Pradhan K. P., Mohapatra S. K., Sahu P. K., Behera D. K., (2014), Impact of high-K dielectric on analog and RF performance of nanoscale DGMOSFET, Microelectron. J. 45: 144-151.
[12] Sentarus Device User Guide. [online]. Available: http://www.synopsys.com.
[13] Tayal S., Nandi A., (2018), Effect of high-K gate dielectric in-conjunction with channel parameters on the performance of FinFET based 6T SRAM. J. Nanoelectron. Optoelectron. 13: 768-774.
[14] Tayal S., Nandi A., (2018), Interfacial layer dependence of high-k gate stack based conventional trigate FinFET concerning analog/RF performance, in Proc. of 4th International Conf. on Devices, Circuits and Systems (ICDCS), 305-308.
[15] Tayal S., Nandi A., (2017), Comparative analysis of high-k gate stack based conventional & junctionless FinFET, in Proc. of 14th IEEE India Council International Conf. (INDICON), 1-4.
[16] Tayal S., Nandi A., (2017), Effect of FIBL in-conjunction with channel parameters on analog and RF FOM of FinFET. Superlatt. Microst. 105: 152-162.
[17] Granzner R., Polyakov V. M., Schwierz F., Kittler M., Doll T., (2003), On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs. Phys. E. 19: 33-38.
[18] Nandi A., Saxena A. K., Dasgupta S., (2016), Oxide thickness and S/D junction depth based variation aware OTA design using underlap FinFET. Microelectron. J. 55: 19-25.
[19] Tayal S., Nandi A., (2018), Optimization of gate stack in junctionless Si-nanotube FET for analog/RF applications. Mater Sci Semicond. Process. 80: 63-67.
[20] Gupta S., Nandi A., (2019), Effect of air spacer in underlap GAA nanowire: An analog/RF prospective, IET Circ Devices Syst. 13: 1196-1202.
[21] Rabey J. M., Chandrakasan A. P., Nikolic B., (2003), Digital integrated circuits: A Design Perspective, Pearson Education.
[22] Sachid A. B., Manoj C. R., Sharma D. K., (2008), Gate fringe-induced barrier lowering in underlap FinFET structures and its optimization. IEEE Electron Dev. Lett. 29: 128-130.
[23] Saini G., Choudhary S., (2016), Improving the performance of SRAMs using asymmetric junctionless accumulation mode (JAM) FinFETs. Microelectron. J. 58: 1-8.