Synthesis and characterization of Silver nanoparticles from fruit extract of Michelia Champaca L.: Their antioxidant and antibacterial activity

Document Type : Reasearch Paper

Authors

1 Anjuman E-Islam’s Anjuman Degree College, Vijayapura, Karnataka-586 101, India.

2 Environmental Biology Laboratory, P. G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka 580003, India.

3 Davangere University, Shivagangotri, Davangere Karnataka-577 002, India.

Abstract

Plant mediated synthesis of silver nanoparticles (AgNPs) is considered as a representative approach in material synthesis for environmental benignity. In this paper, we report an eco-friendly (green) protocol for the preparation of AgNPs using fruit extract of Michelia champaca L. The color change in experimental solution from light brown to dark brown indicates the resonance of AgNPs and further confirmed by characteristic Surface Plasmon Resonance (SPR) absorption peak at 410 nm using UV-Vis spectroscopy. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirms the presence of phytochemicals like phenols and flavonoids in the fruit extract which are responsible for reduction and stabilization of AgNPs. The biocapping molecules of nanoparticles were possibly stable and were negatively charged as revealed by zeta potential measurement. Further, the size and morphology of the nanoparticles were studied by using Atomic Force Microscopy (AFM) and High Resolution Transmission Electron Microscope (HRTEM) analysis. The AgNPs were evaluated for antioxidant and antibacterial activities. The DPPH radical scavenging assay showed good antioxidant activity of AgNPs (EC50= 532.16 µg/mL) when compared to both fruit extract (EC50= 261.08 µg/mL) and standard ascorbic acid (AS) (EC50= 426.04µg/mL). The AgNPs exhibited potent antibacterial activities against both gram positive and gram negative bacteria. The Pseudomonas aeruginosa (19.00±0.73a mm) showed the highest zone of inhibition at 1000µg/ml concentration of AgNPs solution followed by Staphylococcus aureus (9.00±0.14a mm), Bacillus cereus (10.00±0.19a mm) and Escherichia coli (10.66±0.18a mm). Finally, it can be concluded that AgNPs from Michelia champaca fruit extract showed distinctive free radical scavenging and potent antibacterial activity.

Keywords


  1. Nilavukkarasi M., Vijaykumar S., Prathip Kumar S, (2020), Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency. Mater. Sci. Energy Technol. 3: 371-376.
  2. Kalpana V. N., Devi Rajeswari V., (2018), A Review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. Article ID 3569758, 12.
  3. Thakur S., Thakur S., Kumar R., (2018), Bio-nanotechnology and its role in agriculture and food industry. J. Mol. Genet. Med. 12: 1-9.
  4. Huang W., Yan M., Duan H., Bi Y., Cheng X., Yu H, (2020), Synergistic antifungal activity of green synthesized silver nanoparticles and epoxiconazole against Setosphaeria turcica. J. Nanomater. Article ID 9535432, 7.
  5. Swanner J., Fahrenholtz C., Singh R., (2016), Systemic delivery of silver nanoparticles and targeting of the folate receptor alpha for the treatment of triple-negative breast cancer. Mol. Cancer Res. 14: B04-B08.
  6. Mao B. H.,  Chen Z. Y., Wang Y. J.,  Yan S. J, (2018), Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientif. Rep. 8: 2445-2452.
  7. Kinnear C., Moore T. L., Rodriguez-Lorenzo L., Rothen-Rutishauser B., Petri-Fink A., (2017), Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117: 11476–11521.
  8. Mahdieh M., Zolanvari A., Azimee A. S., Mahdieh M., (2012), Green synthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica F. 19: 926-929.
  9. He Y., Wei F., Ma Z., Zhang H., Yang Q., Yao B., Zhang Q., (2017), Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 7: 39842–39851.
  10. Siddiqi K. S., Husen A., Rifaqat A. K. R., (2018), A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotec. 16: 14-21.
  11. Roy A.,  Bulut O.,  Some S.,  Mandal A. K., Yilmaz, M. D., (2019), Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9: 2673–2702.
  12. Nahar K., Aziz S., Bashar M. S., Haque M. A., Al-Reza A. M., (2020), Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. Int. J. Nano Dimens. 11: 88-98.
  13. Paladini F., Pollini M., (2019), Antimicrobial silver nanoparticles for wound healing application: Progress and future Trends. Mater. 12: 2540-2546.
  14. Smith R., Russo J., Fiegel J., Brogden N., (2020), Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics. 9: 56-61.
  15. Zhu J., Liu O., Palchik Y., Koltypin A., (2000), Gedanken, shape-controlled synthesis of Silver nanoparticles by pulse sonoelectrochemical methods. Langmuir. 16: 6396-6399.
  16. Kim D.,  Jeong S., Moon J., (2006), Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnol. 28: 4019-24. 
  17. Sreeram K. J., Nidhin D., Nair B. U., (2008), Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bull. Mater. Sci. 31: 93–96.
  18. Gan P. P., Ng S. H., Huang Y., Li, S. F., (2012), Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach. Bioresour. Technol. 113: 132–135.
  19. Horwat D., Zakharov D. I., Endrino J. L., Soldera F., Anders A., Migot S., Karoum R., Vernoux P. H., Pierson J. F., (2011), Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition. Surf. Coat. Technol.205: 171-177.
  20. Sadeghi B., Rostami A., Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta Part A: Molec. Biomolec. Spectro. 134: 326–332.
  21. Kathiraven T., Sundaramanickam A., Shanmugam N., Balasubramanian T., (2015), Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci. 5: 499–504.
  22. Elamawi R. M., Al-Harbi R. E., Hendi, A. A., (2018), Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyp. J. Biol. Pest Cont. 28: 28-34.
  23. Hulkoti N. I., Taranath T. C., (2014), Biosynthesis of nanoparticles using microbes-a review. Colloids Surf B: Biointerfaces. 121: 474–483.
  24. John M. S., Nagoth J. A., Ramasamy K. P., Mancini A., Giuli G., Natalello A., Ballarini P., Miceli C., Pucciarelli S., (2020), Synthesis of bioactive silver nanoparticles by a Pseudomonas strain associated with the antarctic psychrophilic protozoon Euplotes focardii. Marine Drugs. 18: 38-44.
  25. Daphedar A.,TaranathT. C., (2018), Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of  Drimia indica (Roxb.) Jessop. Caryologia: Int. J. Cytology, Cytosystematics Cytogenetics. 2165-5391.
  26. Seifipour R., Nozari M., Pishkar, L., (2020), Green Synthesis of silver nanoparticles using Tragopogon Collinus Leaf extract and study of their antibacterial effects. J. Inorg. Organomet. Polym. In Press.
  27. Karthikeyan V., Balakrishnan B. R., Senniappan P., Janarthanan L., Anandharaj G., Jaykar B., (2016), Pharmacognostical, phyto-physicochemical profile of the leaves of michelia champaca linn. IJPPR.Human. 7: 331-344.
  28. Vivek Kumar R., Satish Kumar S., Anitha S. S., Manjula M., (2011), Antioxidant and antimicrobial activities of various extracts of Michelia champaca linn flowers. World Appl. Sci. J. 12: 413-418.
  29. Ghani A., (1997), Medicinal plants of Bangladesh. Mokarram Hossain, M.D., Rumana Jahangir, 2nd Ed. The Asiatic Society of Bangladesh, S.M. Raquibul Hasan, Raushanara Akter, Dhaka. 301.
  30. Vimala R., Nagarajan S., Alam M., Susan T., Joy S., (1997), Anti-inflammatory and antipyretic activity of  Michelia champaca Linn., (white variety), Ixora brachiata Roxb. and Rhynchosia cana (Willd.) D.C. flower extract. Indian J. Exp. Biol. 35: 1310-1314.
  31. Jarald E. E., Joshi S. B., Jain D. C., (2008), Antidiabetic activity of flower buds of Michelia champaca Linn. J. Pharm. 40: 256-260.
  32. Hoffmann J. J., Torrance S. J., Wiedhopf R. M., Cole J. R., (1977), Cytotoxic agents from Michelia champaca and Talauma ovata: Parthenolide and costunolide. J. Pharm. Sci.  66: 883-887.
  33. Blois M. S., (1958), Antioxidant determinations by the use of a stable free radical. Nature. 29: 1199-1200.
  34. Miri A., Dorani N., Darroudi M., Sarani M., (2016), Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Cell. Mol. Biol. 62: 46-50.
  35. Moteriya P., Chanda S., (2018), Biosynthesis of silver nanoparticles formation from Caesalpinia pulcherrima stem metabolites and their broad spectrum biological activities. J. Gen. Eng. Biotechnol. 16: 105–113.
  36. Anes Al-Sharqi, A., Apun, K., Vincent, M., Kanakaraju, D., & Bilung, L. M., (2019), Enhancement of the antibacterial efficiency of Silver nanoparticles against gram-positive and gram-negative bacteria using blue laser light. Int. J. Photoenergy. 2019: 1–12.
  37. Dakhil A. S., (2017), Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats. J. King Saud Univ. Sci. 29: 462–467.
  38. Veerasamy R., Xin T. Z., Gunasagaran S., Xiang T. F. W., Yang E. F. C., Jeyakumar N., Dhanaraj S. A., (2011), Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J.  Saudi Chem. Soc. 15: 113–120.
  39. Prathna T. C., Chandrasekarana N., Raichur A. M., Mukherjee A., (2011), Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B: Biointerf. 82: 152–159.
  40. Kasthuri J., Veerapandian S., Rajendiran N., (2009), Biological and synthesis of silver and gold nanoparticles using Apiin as reducing agent. Colloids and Surf. B: Biointerfaces. 68: 55-60.
  41. Sankar R., Rizwana K., Shivashangari S. K., Ravikumar V., (2015), Ultra rapid photocatylytic activity of Azardichta indica engineered colloidal titanium dioxide nanoparticles. App. Nanosci. 5: 731–736.
  42. Sadeghi B., Gholamhoseinpoor F., (2015), A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A: Molec. Biomol.  Spec. 134: 310–315.
  43. Song J. Y., Kim B. S., (2009), Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32: 79–84.
  44. Emmanuel A., Afolayan A., (2017), Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citrates Stapf. Adv. Nat. Sci. 8: 015017-015022.
  45. Elemike E. E., Fayemi O. E., Ekennia A. C., Onwudiwe D. C., Ebenso E. E., (2017), Silver nanoparticles mediated by Costus afer leaf extract: Synthesis, antibacterial. antioxidant and electrochemical properties. Molecules. 22: 701-708.
  46. Sriramulu M., Sumathi S., (2017), Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesized using forest and edible mushroom. Adv. Nat. Sci.: Nanosci. Nanotechnol.  8: 045012 (9pp).
  47. Rathi Sre. P. R., Reka M., Poovazhagi R., Arul Kumar M., Murugesan K., (2015), Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta Part A: Molec. Biomol. Spec. 135: 1137–1144.
  48. Espenti C. S., Krishna K. S. V., Rao K. M., (2016), Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential. Mater Lett.  174: 129–133.
  49. Das B., Dash S. K., Mandal D., Ghosh T., Chattopadhyay S., Tripathy, S., Das S., Dey S. K., Das D., Roy S., (2017), Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 10: 862–876.
  50. Guzman M., Dille J., Godet S., (2012), Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology. Biol. Med. 8: 37–45.
  51. Bhuyar P., Ab. Rahim M. H., Sundararaju S., Ramaraj R., Maniam G. P., Govindan N., (2020), Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef. Univ. J. Basic and Appl. Sci. 9: 3-9.
  52. Keat C. L., Aziz A., Eid N. A. M., Elmarzug A., (2015), Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess. 2: 47-53.
  53. Wang L., Hu C., Shao L., (2017), The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 12: 1227–1249.
  54. Yin R., Agrawal T., Khan U., (2015), Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs. Nanomedicine. 10: 2379–2404.
  55. Bonnet M., Massard C., Veisseire P., Camares O., Awitor K. O., (2015), Environmental toxicity and antimicrobial efficiency of titanium dioxide nanoparticles in suspension. J. Biomater. Nanobiotechnol. 6: 213–224.
  56. Slavin Y. N., Asnis J., Hafeli U. O., Bach H., (2017), Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol.15: 65-72.
  57. Hanady S. A., Wasnaa H. M., Ghassan M. S., Ali S., (2016), Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artificial cells. Nanomed. Biotechnol.  45: 1-7.