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Abstract
In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver 
nanoparticle (Ag) embedded poly (9, 9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive 
platform and DNA hybridization technique. The new polymer was synthesized from 9, 9-dioctylfluorene and 
1, 3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reaction and the synthesized polymer 
as well as the Ag nanoparticles loaded composite were characterized using Fourier-transform infrared 
spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray powder diffraction (XRD), Scanning 
Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis. For accurate and 
rapid label-free electrochemical detection of pathogenic bacteria such as E.coliwas studied by spin coating 
the nanocomposite suspension into indium tin oxide electrode (ITO) followed by the immobilization of 
aminoterminated oligonucleotide (pDNA), as probe. The resultant pDNA/Ag-CFP/ITO biosensor was then 
used to detect ssDNA, cleaved from genomic DNA of E.coli, using differential pulse voltammetry (DPV) 
technique. Under optimal experimental conditions, the biosensor could detect ssDNA in a wide linear range 
from 1 × 10-15 M to 1 × 10-22 M with a lowest detection limit of 1 × 10-22 M.

Keywords: Conductive Nanocomposites; DPV Sesnor; E. Coli Detection; Electrochemical Sensor; Polyfluorene 
Derivatives.
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INTRODUCTION
E.coli is a member of Enterobacteriaceae, 

which is a bacterial family [1], found in most 
common intestinal microorganism of humans and 
warm-blooded animals [2]. Some strains of this 
bacterium E. Coli is mainly transmitted through 
consumption of contaminated water samples. 
Lack of hygiene practice in production, handling 
and transportation of water samples could lead 
to easy contamination of E. Coli. The increasing 
number of water poisoning cases due to E. Coli 
implies there is a crucial need for a more sensitive 

and rapid detection method to detect and 
quantitate the presence of this pathogen in water 
samples including oceans [3, 4], rivers [5, 6], lakes 
[7, 8] and sewer water [9, 10]. Early detection of E. 
Coli in the water will help to prevent the spread of 
E. Coli [11].

There are different tests for a pathogenic 
bacteria detection in clinical samples such as 
non- culturing and culturing methods, enzyme-
linked immunosorbent assay (ELISA), polymerase 
chain reaction (PCR), optical detection methods 
[12-13] and isothermal microcalorimetry (IMC) 
[14]. These procedures are time-consuming, 
expensive and require specialist equipment and 
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well-trained personnel. Therefore, development 
of a methodology that provides easy preparation 
of sample and rapid recognition of bacteria remain 
desirable and challenging.

Electrochemical biosensors have attracted 
considerable attention for its intrinsic advantages, 
such as simplicity, high compatibility, impressive 
sensitivity, portability, cost- efficiency, and quick 
response [15]. Furthermore, the electrochemical 
biosensors can tolerate matrix effects of 
physiological samples, and provide direct 
detection of bacteria in clinical samples [16]. The 
combined features of electrochemical techniques 
with high-selective nature of oligonucleotide has 
led to the design of biosensors for the detection 
of specific genomic DNA sequences. In recent 
years, a series of signal amplification strategies 
have been applied to improve the sensitivity, 
signal-to-noise (S/N) ratio and low detection limit 
of electrochemical methods [17]. This biosensor 
is very useful and highly desirable because of its 
high productivity, low limit of detection, simplicity 
portability and most importantly, it requires a low 
volume of analytes.

Conducting polymers are organic conjugated 
polymers that feature an extended π- orbital system 
through which electrons can move from one end of 
the polymer to the other. CPs also exhibit very high 
flexibility, which can be modulated together with 
their electrical properties by using appropriate 
chemical modeling and synthesis [18-20]. These 
distinctive properties of CPs have broadened 
their applications in various technological fields, 
such as in the design of light-emitting diodes [21], 
anti-static coating [22], electrochromic devices 
[23], solar cells [24], anti-corrosion coatings [25], 
chemical sensors and biosensors [26], and drug- 
release systems [27-28]. Poly (fluorene)s and 
derivatives are attracting significant interest in the 
context of polymer-based optoelectronic devices, 
and in particular for the fabrication of efficient and 
long-lived light-emitting diodes [29]. It provides 
excellent electrochemical activity and also, it can 
act as a suitable matrix for the immobilization of 
bio-components on the surface electrode [30].

Among various nanomaterials, Ag NPs 
are widely used in sensing fabrication due to 
their biocompatibility, optical, electronic, and 
electrochemical properties [31-33]. Excellent 
physicochemical attributes of silver based 
conducting polymers (CP) enhanced the 
increasing use of these materials as a component 

in biosensors [34]. Specifically, high electrical 
conductivity and enhanced surface areas of 
silver-based CP in combination with ssDNA as 
the recognition element improves the overall 
sensitivity of the biosensors [35]. Silver, a CP 
based ssDNA nanocomposite, has emerged as 
an attractive polymer nanocomposite in the field 
of electrochemical application mainly due to its 
excellent electrical and thermal conductivity [36-
37]. Abdullah et al developed an electrochemical 
biosensor using silver nano prisms which exhibited 
a wide detection range from 0.01– 0.1 pM of E.Coli 
[38].

He et al studied multiplexed detection of 
DNA with conjugated polymer on Ag/Au strip 
nanorod [39]. David Whitten et al. [40] developed 
an assay for a target single strand DNA based 
on conjugated polymer fluorescence super 
quenching, in which an anionic poly (phenylene 
ethynylene) immobilized polystyrene sphere with 
a quencher labeled DNA has been used. In all of 
these reports involve tedious procedure with 
the usage of multiple components such as dye 
or quencher labeled DNA [41-42], quantum dots 
[43] and Au/Ag film etc., [44] In the present work 
we have synthesized new conducting polymer 
by Fridelcraft alkylation method to enhance the 
conductivity of the nanoparticle as shown in 
Scheme. 1. Ag-CFP biosensor was designed using 
the hybridization technique between Ag and CFP 
without any chemical reduction method and drop-
casted onto Indium Tin Oxide (ITO). In this study, 
ssDNA was used as a linker to ensure the binding 
between Ag-CFP polymer nanocomposites. Under 
the optimal conditions, the biosensor could detect 
the E. Coli via differential pulse voltammetry (DPV) 
technique. Furthermore, the biosensor was also 
applied to detect the water sample pathogen 
in real drinking water samples. The developed 
biosensor has several distinct advantages 
including high sensitivity, good selectivity and low 
cost. This study is the first to report the application 
of ssDNA/Ag-CFP/ITO as a biosensor for detecting 
E. Coli.

EXPERIMENTAL 
Materials and reagents

1, 3- dichlorobenzene, 1-1’ biphenyl, 9, 
9-dioctyl-9H-fluorene, dichloromethane (DCM) 
were of analytical grade and purchased from SRL 
and Fischer scientific, India. The disodium hydrogen 
phosphate (Na2HPO4), potassium dihydrogen 
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phosphate (KH2PO4), sodium chloride (NaCl) and 
potassium chloride (KCl) were purchased from 
Sigma-Aldrich. All chemicals and solvents were 
obtained from the commercial sources and used 
directly without further purification, and all glass 
wares were cleaned successively with aqua regia 
and D.I water and then dried before use. Probe 
DNA (pDNA): amine-5’-GGT CCG CTT GCT CTC GC-
3’ and the genomic DNA of E.coli were purchased 
from Synergy Scientific products, India. The 
genomic DNA was cleaved using PCR technique, 
which resulted in ssDNA solution in Phosphate 
buffer at pH 7.0 and was stored at -20 °C prior to 
use.

Instrumentation
The functional groups of the CFP, Ag and 

were determined by Fourier transform infrared 
(FT-IR), whereas the 1HNMR analysis was done 
through Bruker instrument with 400 MHz. The 
morphology of the prepared nanocomposite 
was characterized using a Transmission Electron 
Microscope (FEI-TECNAI-G2 20 TWIN) and 
Scanning Electron Microscopy (Hitachi- S-3400N).
The electrochemical experiments were performed 
using, an electrochemical workstation (CHI604E). 
Three-electrode system was used along with ITO, 
namely, the working electrode, a platinum wire, 
the counter electrode and silver/silver chloride 
(Ag/AgCl), the reference electrode. The ITO 
surface was cleaned successively with aqua regia 
and D.I water and then dried before use.

Synthesis of Silver nanoparticles
For the preparation of silver nanoparticles, 

silver nitrate solution (1.0 mM) and 8% (w/w) 
Sodium Dodecyl Sulphate (SDS) were used as 
a metal salt precursor and a stabilizing agent, 

respectively. Hydrazine hydrate solution (4.0 
mM) and sodium citrate solution (2.0 mM) 
were used as reducing agents. The transparent 
color less solution was converted to the 
characteristic pale yellow and pale red color, 
when sodium citrate was used as stabilizing 
agent. The occurrence of color indicated the 
formations of silver nanoparticles were purified 
by centrifugation. To remove excess silver ions, 
the silver colloids were washed at least three 
times with deionized water under nitrogen 
stream [45].

Synthesis of poly (9, 9-dioctylfluorene-ran-
phenylene)

In a 250 mL round bottom flask 6 mmol 
of 9, 9-dioctyl-9H-fluorene, 4mmol of 1,3- 
dichlorobenzene and 4 mmol 1,1’-biphenylwas 
added 100 mL of dichloromethane (DCM), and 
4.00 g of anhydrous aluminum chloride (30 
mmol) were added sequentially. The reaction 
mixture was fitted with a condenser and heated 
to 70 °C for 16 h under reflux. After the reaction 
time, the resulting mixture was cooled to room 
temperature. The solid brown precipitate was 
filtered off, washed several times with DCM, 
methanol and water to completely remove the 
unreacted starting precursors and catalyst, and 
dried in a vacuum for 6 h to obtain the solvent free 
material with 84% yield [46].

Preparation of Ag-CFP polymer nanocomposites
1 mg, 3mg and 5mg of Ag were dispersed in 

10 mL chloroform (CHCl3) and ultrasonicated for 1 
hour to get a suspension. Further, 0.2g of CFP was 
added in CHCl3 solution followed by ultrasonication 
for 30 minutes which resulted in Ag-CFP polymer 
nanocomposite formation.

 
 

 
 
 
 
 Figure 1. A schematic diagram of the modification process of ITO. (a) drop casting of Ag-CFP on 
ITO, (b) pDNA immobilization on Ag - CFP/ITO surface, (c) Ag - CFP/pDNAincubated with the tDNA 
and (d) DPV measurements. 
  

Fig. 1. A schematic diagram of the modification process of ITO. (a) drop casting of Ag-CFP on ITO, (b) pDNA immobilization on Ag -CFP/
ITO surface, (c) Ag - CFP/pDNAincubated with the tDNA and (d) DPV measurements.
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Fabrication of the pDNA/Ag-CFP/ITO biosensor 
electrode and sensing studies

ITO was initially polished using 0.05 μm-sized 
alumina fine powder to remove impurities from 
the electrode surface, and the electrode was 
then ultrasonicated, rinsed with distilled water 
and then left to dry at room temperature. Ag-
CFP solution was spin coated onto ITO to obtain 
Ag-CFP/ITO electrodes. The thickness of the 
prepared composted is 0.05mm.To fabricate the 
sensing electrode of pDNA/Ag-CFP/ITO biosensor, 
firstly, the Ag- CFP/ITO was immersed into pDNA 
solution (oligonucleotide complementary to 
ssDNA of E.coli) with a concentration of 10 μmol 
L-1 for 30 min, then removed and left to dry under 
ambient conditions. The fabricated electrode was 
then stored at 4 °C until future use. The overall 
detection process is schematically shown in Fig. 1. 
Further, the pDNA/Ag-CFP/ITO was immersed into 
tDNA solution (ssDNA cleaved from genomic DNA 
of E.coli) having varying concentrations for 30 min, 
then removed and washed with DD water, and air 
dried at room temperature to obtain pDNA-tDNA/
Ag-CFP/ITO for DPV analysis.

RESULTS AND DISCUSSION
The Fig. 2 presents the synthesis of poly (9, 

9-dioctylfluorene-ran-phenylene), a random 
copolymer of fluorine and phenylene units using 
Friedel Crafts alkylation reaction. The phenylene 
units are linked as 1,3 and 1,4 position of benzene 

and biphenyl moieties.

FT-IR Studies
FTIR spectra of Ag, Ag loaded CFP has been 

given in Fig. 3. FTIR spectra of Ag nanoparticles 
exhibited prominent peaks at 590 cm−1 and 1353 
cm−1 thereby corresponding to Ag-Ag and Ag-O 
bonds, respectively [47-48]. The FTIR spectrum of 
CFP C-H stretching frequency appeared at 2970 
cm-1, C-C stretching frequency appeared at 1611 
cm-1 and the C-H bending frequency appeared 
at 1254 cm-1. The FTIR spectrum of polymer 
nanocomposite having various weight percentage 
of Ag shows the aromatic C-H stretching vibration 
at 2965, 2926 and 2910 cm-1 and C-H bending 
vibration at 1245, 1215, and 1202 cm-1 for 1%, 3% 
and 5% of Ag-CFP, respectively.The IR absorption 
due to C-C stretching is appeared at 1602, 1595 
and 1582 cm-1and the metal oxide peak present 
in Ag-CFP is appeared at 588, 604, 616 cm-1for 1%, 
3% and 5% of Ag-CFP polymer nanocomposites, 
respectively.

1HNMR Studies
Fig. 4 shows the 1H-NMR spectrum of CFP base 

in CDCl3. The CFP polymer exhibits the
strongest medium of broad peak centered at 

7.032 to 7.601 ppm (m) due to protons fluorene 
and phenyl units, the sharp peak centered at 1.035 
to 4.085ppm (m) is due to the protons of aliphatic 
chain units of the CFP.

 
 

 
 
 

Figure 2. Synthesis of poly (9, 9-dioctyl fluorene-ran-phenylene). 
  

Fig. 2. Synthesis of poly (9, 9-dioctyl fluorene-ran-phenylene).
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XRD Studies
The XRD patterns for Ag, CFP, Ag (1%) - CFP, Ag 

(3%) - CFP, Ag (5%) - CFP polymer nanocomposites 
are shown in Fig. 5a–e, respectively. The diffraction 
pattern of silver nanoparticles, presented in Fig. 
5a, shows sharp and well-defined diffraction 

lines at 2θ = 38.1°, 44.3°, 64.2° and 77.3°, which 
can be assigned to the (111), (200), (220) and 
(311) reflections of the face centered cubic (fcc) 
structure of metallic silver, respectively [49]. The 
lattice parameter calculated from XRD pattern is 
a=b=c=4.079 A° in agreement with the literature 

 

 

 

 Figure 3. FTIR spectrum of Ag, CFP, Ag (1%) - CFP, Ag (3%) - CFP, Ag (5%) – CFP. 

  

 

 

 

 Figure 4. 1HNMR spectrum of Poly (9, 9-dioctylfluorene-ran-phenylene). 

  

Fig. 3. FTIR spectrum of Ag, CFP, Ag (1%) - CFP, Ag (3%) - CFP, Ag (5%) – CFP.

Fig. 4. 1HNMR spectrum of Poly (9, 9-dioctylfluorene-ran-phenylene).
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value a = 4.076 A° and the diffraction pattern is 
in good agreement with the literature report 
JCPDS File No. 04-0783. The well-defined intense 
peaks in diffraction pattern confirm excellent 
crystallinity of silver nanoparticles. Fig. 4b depicts 
the XRD pattern for CFP, which suggests that 
the polymer has amorphous structure. Fig. 5c-e 
represents the XRD patterns for Ag-CFP in 1%, 3% 
and 5% of silver intercalated in the CFP polymer, 
and one can see the peaks corresponding to the 
Ag crystallites. However, these peaks are slightly 
shifted, from their respective standard positions, 
may be due the presence of CFP polymer matrix. 
In addition, we observed reduced intensity of 
the peaks, and relatively larger peak broadening, 
compared with XRD of pure Ag nanoparticles. 
This indicates still smaller average size of Ag 
crystallites in composite polymer, compared 
to that of pure Ag nanoparticle. This suggests 
that Ag is present in the CFP polymer and the 
presence of CFP has influenced the preferred 

orientation of Ag nanoparticle in the polymer 
nanocomposites to some extent. The increase in 
the average crystallite size and an increase in the 
average dislocation density with the increase of Ag 
content into the CFP nanocomposites have been 
observed and presented in Table 1. This change 
in structural parameters clearly reveals that the 
Ag nanoparticles strongly interacted with CFP 
random copolymer. The average crystallite size (D) 
was evaluated from the FWHM of the diffraction 
peak using Scherer’sequation

D = 0.9λ /βcosθ        (1)

where β is the FWHM of the diffraction line 
in radians and λ is the X-ray wavelength. The 
calculated average crystallite sizes were found 
to be in the range of 0.3-42 nm and are listed in 
Table 1. The micro strain (ε), dislocation density (δ) 
and number of crystallites per unit area (N) were 
calculated using the following relations (Eqs. 2, 3 
and 4) and their values are given inTable1.

 

 

Figure 5. XRD patterns for (a) Ag, (b) CFP, (c) Ag (1%) - CFP, (d) Ag (3%) - CFP, (e) Ag 
(5%) - CFP polymer nanocomposite. 

  

Fig. 5. XRD patterns for (a) Ag, (b) CFP, (c) Ag (1%) - CFP, (d) Ag (3%) - CFP, (e) Ag (5%) - CFP polymer nanocomposite.

Table.1. XRD parameters of Ag-CFP nanocomposites. 
 

Sample FWHM β (°) Crystalline Size D(nm) 
Dislocation density 

⸹×10-3(nm-2) Micro strain ε ×10-3 
No.of 

crystalline per unit cell 
Ag 0.221 41.23 0.0005 2.811 0.001 
CFP 27.32 0.321 8.920 346.2 3008.1 

Ag (1%)-CFP 5.093 1.726 0.309 64.53 514.1 
Ag (3%)-CFP 1.531 7.346 0.0280 19.39 0.252 
Ag (5%)-CFP 0.730 12.54 0.006 9.256 0.050 

 

Table.1. XRD parameters of Ag-CFP nanocomposites.
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Micro strain (ε) = β cosθ/4             (2)

Dislocation density (δ)= 15ε/aD                (3)

Number of crystallites (N)=t/D3          (4)
where θ is the Bragg’s angle; t is thickness of 

the nanocomposites; ε is the strain that induces a 
deformation of one part per million.

SEM analysis
Morphology of the synthesized silver 

nanoparticles in the CFP polymer was observed 
from the SEM micrographs.  Figs. 6(a-b), shows 
the SEM images of silver nanoparticles in spherical 
shape. The nanoparticles were not in direct 
contact even within the aggregates, indicating 
stabilization of the nanoparticles by a capping 
agent [50]. The larger silver particles may be due 
to the aggregation of the smaller ones, due to the 
SEM measurements. The SEM images of Ag (5%) 
-CFP composites (Fig. 5c-d) confirm that the Ag 
5% nanoparticles are uniformly dispersed in CFP 
polymer matrix.

TEM analysis
The TEM images of Ag nanoparticles are in 

shown Fig.7a and 7b, which confirms that the 
Ag nanoparticles are spherical in shape. It is 
also observed that few agglomerates of small 
grains and some dispersed nanoparticles are 
seen. Further, silver nanoparticle is found to be 
in spherical shape (Fig. 7b.) and the particle size 
ranges from 10 to 50 nm with mean the average 
diameter of 25 nm.

Electrochemical characterization ofAg-CFP
CyclicVoltammetry

Fig. 8 shows the electrochemical 
characterization of modified electrodes, oxidation 
and reduction peaks of CFP and the incorporation 
of 1% of Ag nanoparticles in CFP is clearly seen, 
the slight increase in redox peak may be due to 
the inhibition of electron transfer. However, 
higher loading of silver nanoparticles (Ag 5%-
CFP) resulted in increased redox peak which may 
be due to the formation of conductive networks 
in the polymer matrix. The oxidation peak of Ag 
NPs appears at about +1.6 V versus reference 
electrode corresponding to a reverse reduction 
peak potential at -0.3 V versus reference electrode. 
The highest peaks observed from the AgNPs 

 
 

Figure 6. SEM images of (a & b) Ag nanoparticle and (c & d) Ag (5%) –

CFP. 

  

Fig. 6. SEM images of (a & b) Ag nanoparticle and (c & d) Ag (5%) –CFP.

https://www.elsevier.es/en-revista-journal-applied-research-technology-jart-81-articulo-biosynthesis-pva-encapsulated-silver-nanoparticles-S1665642316300748
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composites indicate that the Ag (5%)-CFP has the 
strongest ability of enhancing electron transfer 
among the others. This might be due to the Ag 
NPs which can increase the conductivity of the 
film by facilitating the electron transfer. It is also 
evident from Fig 8 that the response current also 
increased proportionally to Ag content.

EIS studies
 The Nyquist diagrams determined for Ag, 

CFP, Ag (1%)-CFP, Ag (3%)-CFP and Ag (5%)- CF-
PareshowninFig.9(a),whileFig.9(b)displaysthecor-
respondingBodeplots.The magnitude of the 

impedance indicates the surface resistance to 
transportation of electrons and charges. The im-
pedance of the Ag (5%)-CFP composite is several 
folds smaller than the impedance of Ag, CFP, Ag 
(1%)-CFP and Ag (3%)-CFP implying increased 
charge/electron transfer via the Ag NPs. Such im-
provement in the charge/electron transfer would 
be beneficial to improve sensing ability. In EIS, 
the absolute value of the impedance is inversely 
proportional to capacitance and reduced imped-
ance at low frequency implying an increase of 
electrochemical capacitance.  In addition, elec-
tron/charge-transfer composite can be identified 

 
 

Figure7. (a & b) TEM images of Ag nanoparticles. 

  

Fig.7. (a & b) TEM images of Ag nanoparticles.

 
 

Figure 8. The CV of CFP, Ag, Ag (1%)-CFP, Ag (3%)-CFP and Ag (5%)-CFP in PBS (pH 

7.0) at 100 mVs-1 scan rates. 

  

Fig. 8. The CV of CFP, Ag, Ag (1%)-CFP, Ag (3%)-CFP and Ag (5%)-CFP in PBS (pH7.0) at 100 mVs-1 scan rates.
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from the phase angle expression of the Bode plots 
in Fig. 9(b). The phase angle of the Ag has two 
phases obtained at 52° and 19° and CFP has only 
one phase value at 42° after the formation of CFP 
composite with various weight percentage of Ag 
such as 1% 3% and 5%. The corresponding phase 
value that shifted to 42° 28° and 10° confirms the 
uniform dispersion of Ag in polymer matrix.

Differential Pulse Voltammetry
Fig. 10a shows the DPV behaviour of Ag-CFP 

modified ITO in the presence of 0.1 M PBS as 
supporting electrolyte. The enhanced peak current 
was observed for Ag (5%)-CFP when compared 
with various weight percentages of 1%, 3% of Ag-

CFP under the experimental conditions. The 5% of 
Ag-CFP reduction peak current was larger than the 
1% and 3% Ag- CFP electrode which can increase 
the conduction pathways and is anticipated 
to promote the electron transfer between the 
solution and electrode surface. The plot of the 
current density vs.

the various electrode is plotted in Fig. 
10b, which also indicates that the Ag(5%)-CFP 
electrode exhibits high current density values 
when comparted to Ag (1%)-CFP and Ag(3%)- 
CFP electrodes. It is anticipated that Ag (5%)-CFP 
electrode may show enhanced sensitivity for 
DNA detection and which has been used for DNA 
hybridization studies.

 

 

 

 Figure 9. (a) Electrochemical properties of the fabricated electrodes. The EIS 
studies of Ag, CFP, Ag (1%)-CFP, Ag (3%)-CFP, and Ag (5%)-CFP in0.1M PBS (pH 7.0) 
at 100mVs-1 scan rates. 8(b) Blot plot of Ag, CFP, Ag (1%)-CFP, Ag (3%)-CFP, and Ag (5%)-

CFP. 

  

Fig. 9. (a) Electrochemical properties of the fabricated electrodes. The EIS studies of Ag, CFP, Ag (1%)-CFP, Ag (3%)-CFP, and Ag (5%)-
CFP in0.1M PBS (pH 7.0) at 100mVs-1 scan rates. 8(b) Blot plot of Ag, CFP, Ag (1%)-CFP, Ag (3%)-CFP, and Ag (5%)-CFP.

 

Figure 10. (a) Electrochemical properties of the fabricated electrodes. The DPV 
studies of various electrodes in Ag, CFP, Ag(1%)-CFP, Ag(3%)-CFP, and Ag(5%)-
CFP in0.1M  PBS (pH 7.0) at 100 mVs-1 scan rate, (b) sensitivity of the electrodes. 

  

Fig. 10. (a) Electrochemical properties of the fabricated electrodes. The DPV studies of various electrodes in Ag, CFP, Ag(1%)-CFP, 
Ag(3%)-CFP, and Ag(5%)-CFP in0.1M  PBS (pH 7.0) at 100 mVs-1 scan rate, (b) sensitivity of the electrodes.
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Bio sensing Studies
The working electrode used in Ag (5%)- CFP 

was also used for DNA sensor studies. Differential 
pulse voltammetry (DPV) experiments were 
performed in 0.1M Phosphate buffer solution (pH 
= 7) and experimental parameters were optimized 
according to the voltammetry response of Ag (5%)-
CFP in the electrode surface. It has been observed 
that the peak current after hybridization was 
very low for tDNA/Ag (5%)-CFP/ITO bioelectrode 
showing maximum hybridization efficiency of 
tDNA with pDNA /Ag(5%)-CFP/ITO bioelectrode. 
Further, various tDNA of concentrations (1 × 10-

15 to 1 × 10-22 M) were used for the biosensing 
studies at 25oC in Fig.11 (a). On observation it is 
clear that incubation time of 60 s is sufficient for 
the interaction of ssDNA with tDNA bioelectrode 
as discussed earlier. As indicated in Fig. 11a, 
current signal of ssDNA/Ag (5%) - CFP/ITO 
decreases as the target concentration increases 
and remains constant with further increase in 
the tDNA concentration after incubation with 
tDNA sequence, which shows that the entire 
immobilized tDNA is involved in hybridization 
process at the bioelectrode surface. Fig. 11b 
indicates that the peak current of ssDNA/Ag (5%)- 

 

 

 

 

 Figure. 11. a) Evaluation of sensitivity of biosensor on a different E.Coli 
concentration of DPV response (a) pDNA/Ag(5%)-CFP/GCE, (b) 1 × 10-15 M, (c) 1 × 

10-16 M, (d) 1 × 10-17 M (e) 1 × 10-18 M, (f) 1 × 10-19 M, (g) 1 × 10-20M (h)1 × 10-21 M, (i) 
1 × 10-22 M, in 0.1 M PBS at 

PH 7.0. b) The graph depicts linear relationship between current density and E. Coli 
concentration (logarithm). 

  

Fig.. 11. a) Evaluation of sensitivity of biosensor on a different E.Coli concentration of DPV response (a) pDNA/Ag(5%)-CFP/GCE, (b) 1 
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CFP reduction follows linear relationship with a 
correlation coefficient of 0.98. The detection limit 
of the sensor is 1 × 10-22M. The obtained results 
are comparable with literature reports on E.coli 
detection using DPV technique [51-53].

Water samples analysis
Fig. 12 shows the response of the biosensor 

with real water samples, such as drinking water, 
tap water, sterile water and waste water which are 
spiked with tDNA, exhibited a positive response to 
the presence of different concentration of E. Coli 
DNA. The results obtained in this water sample 
analysis were comparable to the standard graph 
obtained in Fig. 11(a). This biosensor showed 
better recyclability illustrating its applicability for 
water sample analysis.

CONCLUSION
In this work the potential of Ag nanoparticles 

loaded poly (9,9-dioctylfluorene-ran- phenylene) 
nanocomposites on the sensitive and specific 
electrochemical detection of ssDNA of E. coli 
has been studied. The oligonucleotide (pDNA) 
functionalized Ag-CFP electrode exhibited 
good sensitivity for the detection of ssDNA of 
E. coli through differential pulse volammetry 
measurements. Electrochemical studies 
demonstrated the successful pDNA immobilization 
and the hybridization of tDNA as monitored 
by DPV. In summary, we have employed a 
new conductive polymer embedded with Ag 
nanoparticle for the detection of E.coli, which 
showed a significant detection of the ssDNA of 
E.coli in the concentration  range of  1× 10-15 M to 
1 × 10-22 M with a lowest detection of 1 × 10 -22 M.
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