Metal nanoparticles as emerging catalysts: A mini review

Document Type : Review

Authors

1 Department of Chemistry, JSS College for Women, Saraswathipuram, Mysuru - 570 009, Karnataka, India.

2 The National Institute of Engineering, Manandavadi Road, Mysuru - 570 008, Karnataka, India.

3 Post Graduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru -570 025, Karnataka, India.

4 Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru - 570 005, Karnataka, India.

Abstract

Green chemistry is the pragmatism of a set of principles, which eliminate the use or production of hazardous substances in the design, development, synthesis and applications of chemical harvest. Accordingly, green synthetic techniques aim at hazard reduction as the recital criteria, whilst designing new chemical processes/methods. Catalysis lies at the heart of all chemical processes and hence, nanocatalysts with particle size dependent material engineering are of significant interest towards green chemistry and clean energy applications.  In addition to particle size, nanostructured catalysts are exceedingly shape and/or morphology sensitive and their catalytic performance depend largely on their shape and morphology. Besides, nanocatalysts empowered with colossal surface areas, excellent recycling potential and efficient recovery characteristics are heralded as new process candidates with expanding catalytic capabilities. Accordingly, recapitulation of the synthesis of several new types of chemical entities is using nano-catalysts in the heterocyclic ring formation and some other important functionalization.

Keywords


 [1]      Ojima I., Clos N., Bastos C., (1989), Recent advances in catalytic asymmetric reactions promoted by transition metal complexes. Tetrahedron. 45: 6901-6939.
[2]      Mallikarjunaswamy C., Lakshmi Ranganatha V., Ramu R., Udayabhanu U., Nagaraju G., (2020), Facile microwave-assisted green synthesis of ZnO nanoparticles: Application to photodegradation, antibacterial and antioxidant. J. Mater. Sci. Mater. Electron.31: 12-18.
[3]      Ranganatha V. L., Nithin K. S., Khanum S. A., Nagaraju G., (2019), Zinc oxide nanoparticles: A significant review on synthetic strategies , characterization and applications, AIP Conference Proceedings 2162, 020089.
[4]      Pramila S., Nagaraju G., Mallikarjunaswamy C., Latha K. C., Chandan S., Ramu R., Rashmi V., Lakshmi Ranganatha V., (2020), Green Synthesis of BiVO4 nanoparticles by microwave method using Aegle marmelos juice as a fuel: Photocatalytic and antimicrobial study. Anal. Chem. Lett. 10: 298-306.
[5]      Basina G., Polychronopoulou K., Zedan A. F., Dimos K., Katsiotis M. S., Fotopoulos A. P., Ismail I., Tzitzios V., (2020), Ultrasmall metal-doped CeO2 nanoparticles for low-temperature CO Oxidation. ACS Appl. Nano Mater. 3: 10805–10813.
[6]      Choudhury B., Choudhury A., (2012), Ce 3 + and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater. Chem. Phys. 131: 666-671.
[7]      Ranganatha V. L., Pramila S., Nagaraju G., Surendra B. S., Mallikarjunaswamy C., (2020), Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: Catalytic, electrochemical, and microbial applications. J. Mater. Sci. Mater. Electron. 20: 1-18.
[8]      Shanmugam S., Hari A., Pandey A., Mathimani T., Felix L., Pugazhendhi A., (2020), Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel. 270: 117453-117459.
[9]      Jiang L., Liu K., Hung S.-F., Zhou L., Qin R., Zhang Q., Liu P., Gu L., Chen H. M., Fu G., (2020), Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15: 848-853.
[10]    Tegenaw A., Sorial G. A., Sahle-Demessie E., Han C., (2020), Role of water chemistry on stability, aggregation, and dissolution of uncoated and carbon-coated copper nanoparticles. Environ. Res. 187: 109700-109708.
[11]    Zablotsky D., Kuzovkov V., Kotomin E., (2020), Role of intrinsic dipoles in the evaporation‐driven assembly of perovskite nanocubes into energy‐harvesting composites. Phys. Status Solidi. 217: 1900533-1900539.
[12]    Moudgil D., Khullar V., (2020), Direct photo-thermal energy storage using nanoparticles laden phase change materials. Solar Energy.  235-246.
[13]    García-Rodríguez A., Moreno-Olivas F., Marcos R., Tako E., Marques C. N. H., Mahler G. J., (2020), The role of metal oxide nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on small intestinal enzyme activity. Env. Sci. Nano. 12: 25 Pages.
[14]    Liu H., Guan J., Mu X., Xu G., Wang X., Chen X., (2016), Nanocatal Encycl. Phys. Org. Chem. 1-75.
[15]    Alshammari A. S., Chi L., Chen X., Bagabas A., Kramer D., Alromaeh A., Jiang Z., (2015), Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis. RSC Adv. 5: 27690-27698.
[16]    Altenhoff M., Aßmann S., Teige C., Huber F. J. T., Will S., (2020), An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy. J. Aerosol Sci. 139: 105470.
[17]    Baer D. R., (2020), Guide to making XPS measurements on nanoparticles. J. Vac. Sci. Technol. A Vacuum, Surf. Film. 38: 31201-31207.
[18]    Kumar B., Smita K., Debut A., Cumbal L., (2020), Synthesis and characterization of SnO2 nanoparticles using cochineal dye. Appl. Phys. A. 126: 1-9.
[19]    Sundaram P. S., Sangeetha T., Rajakarthihan S., Vijayalaksmi R., Elangovan A., Arivazhagan G., (2020), XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Phys. B Condens. Matter. 595: 412342-412348.
[20]    Ahmad T., Nazim A., Farooq U., Khan H., Jain S. K., Ubaidullah M., Ahmed J., (2020), Biosynthesis, characterization and photo-catalytic degradation of methylene blue using silver nanoparticles. Mater. Today Proc. 29: 1039-1043.
[21]    Sinha N., Joshi A. S., Thakur A. K., (2020), Analytical validation of an ATR-FTIR based method for quantifying the amount of polysorbate 80 adsorbed on PLGA nanoparticles. Anal. Methods. 44: 7 page(s).
[22]    Srivastava S. K., Yamada R., Ogino C., Kondo A., (2013), Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res. Lett. 8: 70-77.
[23]    Parida U. K., Bindhani B. K., Nayak P., (2011), Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J. Nano Sci. Eng. 1: 93-98.
[24]     Petla R. K., Vivekanandhan S., Misra M., Mohanty A. K., Satyanarayana N., (2012), Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotech. 3: 14-19.
[25]    Lee J. H., Ahn K., Kim S. M., Jeon K. S., Lee J. S., Yu I. J., (2012), Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J. Nanopart. Res. 14: 1134-1139.
[26]    Yang H., Wang Y., Huang H., Gell L., Lehtovaara L., Malola S., Häkkinen H., Zheng N., (2013), All-thiol-stabilized Ag 44 and Au 12 Ag 32 nanoparticles with single-crystal structures. Nat. Commun. 4: 2422-2427.
[27]    Gawande M. B., (2014), Sustainable nanocatalysts for organic synthetic transformations. Org. Chem. Curr. Res. 3: 1000e137.
[28]    Gawande M. B., Shelke S. N., Zboril R., Varma R. S., (2014), Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 47: 1338-1348.
[29]    Sanjeeva Gandhi M., Mok Y. S., (2014), Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane. Chemosphere. 117: 440-446.
[30]    Patila M., Pavlidis I. V., Diamanti E. K., Katapodis P., Gournis D., Stamatis H., (2013), Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials. Process Biochem. 48: 1010-1017.
[31]    Kumar T. R., Selvam C. S. N., Ragupathi C., Kennedy J. L., Vijaya J. J., (2014), Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications. Powder Technol. 224: 147–154.
[32]    Qu J., Liu H., Ye F., Hu W., Yang J., (2012), Cage-bell structured Au-Pt nanomaterials with enhanced electrocatalytic activity toward oxygen reduction. Int. J. Hydrogen Energy. 37: 13191-13199.
[33]    Zhang J., Tang S., Liao L., Yu W., Li J., Seland F., Haarberg G. M., (2014), Improved catalytic activity of mixed platinum catalysts supported on various carbon nanomaterials. J. Power Sources. 267: 706-713.
[34]    Liu X., Cui S., Sun Z., Du P., (2015), Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim. Acta. 160: 202-208.
[35]    Abdelsayed V., Moussa S., Hassan H. M., Aluri H. S., Collinson M. M., El-Shall M. S., (2010), Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J. Phys. Chem. Lett. 1: 2804-2809.
[36]    Rabbani M. G., El-Kaderi H. M., (2011), Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem. Mater. 23: 1650-1653.
[37]    Climent M. J., Corma A., Hernández J. C., Hungría A. B., Iborra S., Martínez-Silvestre S., (2012), Biomass into chemicals: one-pot two-and three-step synthesis of quinoxalines from biomass-derived glycols and 1, 2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. J. Catal. 292: 118-129.
[38]    Khan F. N., Manivel P., Prabakaran K., Jin J. S., Jeong E. D., Kim H. G., Maiyalagan T., (2012), Iron-oxide nanoparticles mediated cyclization of 3-(4-chlorophenyl)-1-hydrazinylisoquinoline to 1-(4, 5-dihydropyrazol-1-yl) isoquinolines. Res. Chem. Intermed. 38: 571-582.
[39]      Sadjadi S., Majid M. H., Malmir M., (2018), Pd (0) Nanoparticle immobilized on   
cyclodextrinnanosponge-decorated Fe2O3@SiO2 core-shell hollow sphere: an efficient catalyst for CC coupling reactions. J. Taiwan Inst. Chem. Eng. 86: 240-251.
[40]      Candelaria S. L., Shao Y., Zhou W., Li X., Xiao J., Zhang J.-G., Wang Y., Liu J., Li J., Cao G., (2012), Nanostructured carbon for energy storage and conversion. Nano Energy. 1: 195-220.
[41]      Yan K., Chen A., (2013), Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy. 58: 357-363.
[42]      Cuenya B. R., (2010), Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 518: 3127-3150.
[43] Sun C. Q., S(2007), Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35: 1-159.
[44]      Saurabh Somwanshi B., Prashant B., Kharat B., (2020), Nanocatalyst: A brief review on synthesis to applications. J. Phys: Conf. Series 1644: 012046-012052.