Physiological and molecular responses of wheat following the foliar application of Iron Oxide nanoparticles

Document Type : Reasearch Paper

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.

Abstract

This study investigates the possible effects of iron oxide nanoparticles (FeNPs) on plant growth, expression of bZIP, DREB, and WRKY1, and biofortification efficacy in wheat (Triticum aestivum). The seedlings were treated with bulk iron oxide (bulk-Fe) or FeNPs at 100, 200, 300, and 400 mgL-1. FeNPs significantly improved the fresh and dry weights of shoot and root compared to the control. Likewise, different concentrations of bulk-Fe caused an increase in biomass accumulation in shoot and root. Moreover, Fe content was increased in response to the foliar application of FeNPs and bulk-Fe. The expression of bZIP, DREB, and WRKY1 in the FeNP-treated plants was markedly up-regulated compared to the control. The increase in Fe contents and biomass, as well as upregulation in bZIP, DREB, and WRKY1 genes, indicate that FeNPs could be a promising strategy to encounter iron deficiency in the human diet and to improve plant protection against biotic and abiotic stress conditions.

Keywords


[1] Sajjadifar S., Rezayati S., Arzehgar Z., Abbaspour S., Torabi Jafroudi M., (2018), Applications of iron and nickel immobilized on hydroxyapatite-core-shell γ-Fe2O3 as a nanomagnetic catalyst for the chemoselective oxidation of sulfides to sulfoxides under solvent-free conditions. J. Chin. Chem. Soc. 65: 960-969.
[2] Arzehgar Z., Azizkhani V., Sajjadifar S., Fekri M. H., (2019), Synthesis of 2-Amino-4H-chromene derivatives under solvent-free condition using MOF-5. Chem. Methodolog. 3: 251-260.
[3] Sajjadifar S., Arzehgar Z., Ghayuri A., (2018), Zn3(BTC)2 as a highly efficient reusable catalyst for the synthesis of 2‐Aryl‐1H‐Benzimidazole. J. Chin. Chem. Soc. 65: 205-211.
[4] Gupta S., Lakshman M., (2019), Magnetic nano Cobalt Ferrite: An efficient recoverable catalyst for synthesis of 2, 4, 5-trisubstituted imidazoles. J. Medic. Chem. Sci. 2: 51-54.
[5] Saidi W., Abram T., Bejjit L., Bouachrine M., (2018), New organic compounds based on biphenyl for photovoltaic devices: DFT theoretical investigation. Chem. Methodolog. 2: 247-259.
[6] Hameed A., Fatima G. R., Malik K., Muqadas A., Fazal-ur-Rehman M., (2019), Scope of nanotechnology in cosmetics: dermatology and skin care products. J. Medic. Chem. Sci. 2: 9-16.
[7] Hussain A., Ali S., Rizwan M., ur Rehman M. Z., Qayyum M. F., Wang H., Rinklebe J., (2019), Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol. Environ. Safety. 173: 156-164.                                  
[8] Ghasempour M., Iranbakhsh A., Ebadi M., Ardebili Z. O., (2019), Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: An in vitro study. 3 Biotech. 9: 404-409.
[9] Conte R., Calarco A., Peluso G., (2018), Nanosized biomaterials for regenerative medicine. Int. J. Nano Dimens. 1: 209-214.
[10] Kasote D. M., Lee J. H., Jayaprakasha G. K, Patil B. S., (2019), Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainab. Chem. Eng.7: 5142-5151.
[11] Sundaria N., Singh M., Upreti P., Chauhan R. P., Jaiswal J. P., Kumar A., (2019), Seed priming with Iron oxide nanoparticles triggers Iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J. Plant Growth Regul. 38: 122-131.
[12] Rui M., Ma C., Hao Y., Guo J., Rui Y., Tang X., (2016), Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7: 815-821.
[13] Elanchezhian R., Kumar D., Ramesh K., Biswas A. K., Guhey A., Patra A. K., (2017), Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. J. Plant Nutr. 40: 969–1977.
[14] Iannone M. F., Groppa M. D., de Sousa M. E., van Raap M. B. F., Benavides M. P., (2016), Impact of magnetite iron oxide nanoparticles on wheat (Triticum sativum L.) development: Evaluation of oxidative damage. Environ. Exp. Bot. 131: 77–88.
[15] Konate A., He X., Zhang Z., Ma Y., Zhang P., Alugongo G. M., Rui Y., (2017), Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainabil. 9: 1–16.
[16] Pariona N., Martinez A. I., Hdz -García H. M., Cruz L. A., Hernandez -Valdes A., (2017), Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J. Biologic. Sci. 24: 1547-1554.
[17] Li J., Chang P. R., Huang J., Wang Y., Yuan H, Ren H., (2013), Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J. Nanosc. Nanotechnol. 13: 5561-5567.
[18] Rui M., Ma C., Hao Y., Guo J., Rui Y., Tang X., Zhao Q., Fan X., Zhang Z., Hou T., Zhu S., (2016),  Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7: 815-821.
[19] Ghafariyan M., Malakouti M., Dadpour M., Stroeve P., Mahmoudi M., (2013), Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 47: 10645–10652.
[20] Delfani, M., Baradarn Firouzabadi M., Farrokhi N., Makarian H., (2014), Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 45: 530–540.
[21] García A., Espinosa R., Delgado L., Casals E., González E., Puntes V., (2011), Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination. 269: 136–141.
[22] Mushtaq Y. K., (2011), Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J. Environ. Sci. Health A. 46: 1732–1735.
[23] Ma X., Gurung A., Deng Y., (2013), Phytotoxicity and uptake of nanoscale zero-valentiron (nZVI) by two plant species. Sci. Total Environ. 443: 844–849.
[24] Barhoumi L., Oukarroum A., Taher L. B., Smiri L. S., Abdelmelek H., Dewez D., (2015), Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Arch. Environ. Contam. Toxicol. 68: 510–520.
[25] Tombuloglu H., Slimani Y., Tombuloglu G., Korkmaz A. D., Baykal A., Almessiere M., Ercan I., (2019), Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): A comparative study. Plant Physiol. Biochem. 139: 56-65.
[26] Sotoodehnia-Korani S., Iranbakhsh A., Ebadi M., Majd A., Ardebili Z. O., (2020), Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ. Pollut. 114727.
[27] Wang L., Cao H., Qian W., Yao L., Hao X., Li N., Yang Y., Wang X., (2017), Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Annals Botan. 119: 1195-209.
[28] Yang Y., Yu T. F., Ma J., Chen J., Zhou Y. B., Chen M., Ma Y. Z., Wei W. L., Xu Z. S., (2020), The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int. J. Molec. Sci. 21: 670-678.
[29] Ali N., Hadi F., (2018), CBF/DREB transcription factor genes play role in cadmium tolerance and phytoaccumulation in Ricinus communis under molybdenum treatments. Chemosphere. 208: 425-432.
[30] Iranbakhsh A., Ardebili Z. O., Molaei H., Ardebili N. O., Amini M., (2020), Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in Hemp (Cannabis sativa L.). Plasma Chem. Plasma Process. 40: 527-537.
[31] Rajaee Behbahani S., Iranbakhsh A., Ebadi M., Majd A., Ardebili Z. O., (2020), Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. Plos One. 15: e0235556.
[32] Rushton P. J., Somssich I. E., Ringler P., Shen Q. J., (2010), WRKY transcription factors. Trends in Plant Sci.  15: 247-258.
[33] Amato A., Cavallini E., Zenoni S., Finezzo L., Begheldo M., Ruperti B., Tornielli G. B.. (2017), A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Front. Plant Sci. 7: 1979-1986.
[34] Abedi S., Iranbakhsh A., Oraghi Ardebili Z., (2020), Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environ. Sci. Pollut. Res. Int. 28: 3136-3148.   
[35] Yuan J., Chen Y., Li H., Lu J., Zhao H., Liu M., Nechitaylo G. S., Glushchenko N. N., (2018), New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientif. Rep. 8: 1-9.
[36] Rizwan M., Noureen S., Ali S., Anwar S., ur Rehman M. Z., Qayyum M. F., Hussain A., (2019),  Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. J. Soils Sediments. 19: 3749-3759.
[37] Adrees M., Khan Z. S., Ali S., Hafeez M., Khalid S., Ur Rehman M. Z., Hussain A., Hussain K., Chatha S. A., Rizwan M., (2020), Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere. 238: 124681-124686.
[38] Konate A., Wang Y., He X., Adeel M., Zhang P., Ma Y., Ding Y., Zhang J., Yang J., Kizito S., Rui Y., (2018), Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicol.  Environment. Safet.  165: 547-554.
[39] Asadi-Kavan Z., Khavari-Nejad R. A., Iranbakhsh A., Najafi F., (2020), Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). J. Plant Interact. 15: 166-179.
[40] Sharma S., Malhotra H., Borah P., Meena M. K., Bindraban P., Chandra S., Pande V., Pandey R., (2019), Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean. Plant Physiol. Report. 24: 119-128.
[41] Marcus M., Karni M., Baranes K., Levy I., Alon N., Margel S., Shefi O., (2016), Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J. Nanobiotechnol. 14: 1-12.
[42] Soleymanzadeh R., Iranbakhsh A., Habibi G., Ardebili Z. O., (2020), Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biolog. Cracoviensia s. Botanic. 62: 33-42.
[43] Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., Adam L., Pineda O., Ratcliffe O. J., Samaha R. R., Creelman R., Pilgrim M., Broun P., Zhang J. Z., Ghandehari D., Sherman B. K., Yu G., (2000), Arabidopsistranscription factors: Genome-wide comparative analysis among eukaryotes. Science. 290: e2105-e2110.
[44] Bal L. M., Satpute G. K., Srivastava A. K., (2017), Plant stress signaling through corresponding nanobiotechnology. Int. Nanotechnol. Applic. Food. 1: 381-391.
[45] Kang H. G., Singh K. B., (2000), Characterization of salicylic acid‐responsive, arabidopsis dof domain proteins: Overexpression of OBP3 leads to growth defects. The Plant J. 21: 329-339.
[46] Safari M., Ardebili Z. O., Iranbakhsh A., (2018), Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiolog. Plantarum. 40: 117-125.
[47] Neysanian M., Iranbakhsh A., Ahmadvand R., Oraghi Ardebili Z., Ebadi M., (2020), Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. Plos One. 15: e0244207-e024412.