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Abstract
In this study, an inverse trigonometric nanobeam theory is applied for the bending, buckling, and free 
vibration analysis of nanobeams using Eringen’s nonlocal theory. The present theory satisfies zero shear 
stress conditions at the top and bottom surfaces of the nanobeam using constitutive relations. Equations 
of motion are derived by applying Hamilton’s principle. The present theory is applied for the analysis of 
functionally graded material nanobeams. All problems are solved by using the Navier technique. For the 
comparison purpose, the numerical results are generated by using the third shear deformation theory of 
Reddy, first-order shear deformation theory of Timoshenko, and classical beam theory of Bernoulli-Euler 
considering the nanosize effects. The present results are found in good agreement with those of higher order 
theories.
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INTRODUCTION
In recent years, nanobeams are widely used in 

micro electromechanical systems, micro sensors, 
micro actuators, etc. hence requires an accurate 
analysis of the nanobeam considering the 
influence of the small size on bending, buckling, 
and vibration behaviour. In general, the classical 
continuum theories failed to accurately predict 
these responses of nanobeams. To capture the 
small size effects, there are various nonlocal 
continuum theories developed to describe the 
size-dependent phenomenon [1-3]. Eringen’s 
nonlocal theory, strain gradient theory, couple 
stress theory, and surface elasticity theory are the 
available approaches in the literature to capture 
the small size effects of nanobeams. Among those, 
Eringen’s nonlocal theory [4] is widely used in 
the literature for nanobeams. It is well known to 
the research community that in the case of thick 

beams, the classical beam theory (CBT) [5] and the 
first-order shear deformation theory (FSDT) [6] are 
not accurate to capture the nonclassical effects 
which forced the researchers to develop higher-
order beam theories to capture the nonclassical 
effects of deformations [7-9]. Many researchers 
have presented bending, buckling, and free 
vibration analysis of isotropic nanobeams using 
classical and higher-order nonlocal beam theories 
[10-25].

Functionally graded (FG) materials are advanced 
composite materials in which material properties 
such as Young’s modulus, shear modulus, and 
density are graded through-the-thickness of the 
beam. FG nanobeams have wide applications in 
nanotechnology. Simsek and Yurtcu [26] have 
implemented the FSDT accounting nano-size 
effect for the bending and buckling analysis of FG 
nanobeams based on Navier’s technique. Simsek 
and Reddy [27] presented the static, buckling, and 

http://creativecommons.org/licenses/by/4.0/.


165Int. J. Nano Dimens., 12 (2): 164-174, Spring 2021

A. Shamshuddin Sayyad and Y. Marotrao Ghugal

free vibration analysis of FG nanobeams using 
different nonlocal theories formulated via unified 
higher-order beam theory. Akgoz and Civalek [28] 
and Lei et al. [29] applied trigonometric shear 
deformation theory in conjunction with Navier’s 
method for the bending analysis of FG nanobeams. 
Ebrahimi and Barati [30] extended the third-
order shear deformation theory of Reddy for 
the free vibration analysis of functionally graded 
nanobeams using Navier’s technique. Ansari et al. 
[31] applied the FSDT for the bending, buckling, 
and free vibration analysis of FG nanobeams. 
Yu et al. [32] developed a nonlocal beam theory 
considering normal stretching effects for the static 
and free vibration analysis of FG nanobeams. 
Aria and Friswell [33] applied the FSDT along 
with the finite element technique to investigate 
the free vibration and buckling behaviour of FG 
nanobeams. Reddy [34] presented couple-stress 
theories for FG nanobeams. Eltaher et al. [35] 
have applied the CBT along with the finite element 
method in conjunction with Eringen’s nonlocal 
theory to study static and buckling responses 
of FG nanobeams. Khaniki [36] presented a 
vibration analysis of axially graded FG nanobeams 
using Eringen’s nonlocal theory and modified 
differential quadrature method. Salamat-talab et 
al.  [37] applied the third-order shear deformation 
theory for the static and dynamic analysis of FG 
nanobeams using couple stress theory. Zenkour 
and Ebrahimi [38] have applied the TSDT of Reddy 
for the buckling analysis of FG nanobeams resting 
on an elastic foundation based on Eringen’s 
nonlocal theory. Recently Sayyad and Ghugal 
[39] presented a unified formulation of various 
nanobeam theories for the bending, buckling, and 
free vibration of FG nanobeams. 

A good number of research papers have been 
published in the last decade on the bending, 
buckling, and free vibration analysis of FG 
nanobeams using classical theories such as the 

FSDT and the CBT. However, research papers on 
the bending, buckling, and free vibration analysis 
of FG nanobeams using higher-order nonlocal 
beam theories are limited. Therefore, the objective 
of the present study is to develop and apply a 
new non-polynomial type higher-order nonlocal 
beam theory to investigate the bending, buckling, 
and free vibration responses of FG nanobeams. 
Hence, the development of a new non-polynomial 
type higher order nonlocal beam theory and 
its applications to the bending, buckling, and 
free vibration analysis of FG nanobeams can be 
considered as the novelty for this work.  An inverse 
trigonometric function introduced by Nguyen et 
al. [40] is used as a kinematic shape function in 
this study to develop the present nonlocal beam 
theory. This function is also used by Sayyad and 
Ghugal [41] to investigate responses of local FG 
beams. In the present study, this theory is applied 
for the bending, buckling, and free vibration 
analysis of FG nanobeams. The material properties 
of functionally graded beams are varied through-
the-thickness according to the power-law. The 
theory gives the realistic variation of transverse 
shear stress through-the-thickness of the beam 
satisfying boundary conditions at the top and 
bottom surfaces of the beam. This theory does not 
require any shear correction factor to account for 
strain energy due to shear deformation. Equations 
of motion are derived within the framework of 
Hamilton’s principle. Analytical solutions are 
obtained using Navier’s solution technique. 
Numerical results are compared with previous 
literature. The effects of the power-law index and 
nonlocal parameter on deflections, buckling loads, 
and fundamental frequencies are investigated.

MATERIALS AND METHODS
A functionally graded (FG) nanobeam as 

shown in Fig. 1 is considered for the mathematical 
formulation. A beam has a rectangular cross-

 

Fig. 1. Geometry and coordinate system of nanobeam. 

  

Fig. 1. Geometry and coordinate system of nanobeam.
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section with length L and cross-sectional 
dimensions b and h. The beam is subjected to 
transverse load q(x) and axial load N0.  

The material properties of FG nanobeam 
are varying from top to bottom surfaces of the 
beam using the power-law. The power-law for 
the material gradation was first introduced by 
Wakashima et al. [42] which is widely used by 
many researchers for the modeling of functionally 
graded beams. Modulus of elasticity (E) and 
density ( ρ ) of the nanobeam are graded through-
the-thickness using Eq. (1) 
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where subscripts m and c are corresponding to 
metal and ceramic, respectively; k represents the 
power-law coefficient. The range of the value of 
the power-law coefficient is 0 to ∞. At k = 0, the 
nanobeam is made up of purely ceramic whereas 
at k = ∞ the nanobeam is made up of purely metal. 
Eq. (2) shows that the top surface of the beam is 
made up of metal whereas the bottom surface 
is ceramic. The variation of material properties 
according to the power-law is shown in Fig. 2. The 
values of k = 0.1, 0.2, 0.5,1, and 2 are taken to plot 
the variation of material properties according to 
the power-law. However, one can take any value 
of the power-law coefficient in the range of 0 to ∞.     

The displacement field of the present nonlocal 
beam theory is developed using the inverse 
trigonometric shape function to get the traction 
free boundary conditions on the top and bottom 
surfaces of the beam.  
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where u and w are the axial (x-direction) 
and transverse (z-direction) displacements of 
any arbitrary point in the beam domain; u0 and 
w0 are the displacements of any arbitrary point 
on the neutral axis of the beam in the x- and 
z-directions, respectively; φ  is the shear slope. 
An inverse trigonometric shape function is used in 
the axial displacement to account for the effects of 
transverse shear deformation. The nonzero strain 
quantities associated with the present theory 
are calculated using the strain-displacement 
relationships of the linear theory of elasticity.
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Fig. 2. Variation of material properties for various values of the power-law coefficient. 
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The bending and transverse shear stresses 
at any arbitrary point in the beam domain are 
obtained by using the one dimensional Hooke’s 
law.
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where E(z) is Young’s modulus of the FG beam 
varying through-the-thickness according to Eq. 
(1). The second of Eqs. (6) satisfies the traction 
free boundary conditions at the top and bottom 
surfaces of the beam.

Hamilton’s principle in conjunction with the 
present theory is used to derive equations of 
motion. Hamilton’s principle considering the strain 
energy ( )Uδ , the potential energy ( )Vδ , and the 
kinetic energy ( )Kδ is written as follows: 
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where t1 and t2 are the initial and final time; δ
is the variational operator. The final expressions of 
all energies are as follows

( )

( )

/2

0 /2

0 0

0

L h

x x xz xzh
L b b s s

x x x x x x xz

U b dz dx

N M k M k Q dx

δ σ δε τ δγ

δε δ δ δγ

−
= + =

+ − +

∫ ∫
∫

                
� (8)

( ) 00
L w wV q x w N dx

x x
δδ δ ∂ ∂ = +∫  ∂ ∂ 

 	�  (9)

where E(z) is Young’s modulus of the FG beam varying through-the-thickness according to 

Eq. (1). The second of Eqs. (6) satisfies the traction free boundary conditions at the top and 

bottom surfaces of the beam. 

Hamilton’s principle in conjunction with the present theory is used to derive equations of 

motion. Hamilton’s principle considering the strain energy ( )U , the potential energy ( )V , 

and the kinetic energy ( )K is written as follows:  
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where q(x) and N0 are the transverse and axial loads, respectively; ρ(z) is the mass density 

varying through-the-thickness of the beam according to Eq. (1); , , ,b s
x x xN M M Q  are the force 

and moment resultants which are obtained by integrating stresses over the thickness 

coordinates (z = -h/2 to h/2). 
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where  
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where q(x) and N0 are the transverse and axial 
loads, respectively; ρ(z) is the mass density varying 
through-the-thickness of the beam according 
to Eq. (1); , , ,b s

x x xN M M Q  are the force and moment 
resultants which are obtained by integrating 
stresses over the thickness coordinates (z = -h/2 
to h/2).
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                                                                                                      where A, B, C, D, F, H, J are the stiffness 
coefficients defined as follows:  
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Equations of motion are derived by substituting 
Eqs. (8)-(10) into Eq. (7) and then integrating by 
parts. Final equations of motion are obtained by 
setting the coefficients of unknown variables (

0 0u , w ,δ δ δφ ) equal to zero as follows:  
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where I1, I2, I3, I4, I5, I6 are the inertia coefficients 
defined as follows:  
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The kinematic and the natural boundary 
conditions at x = 0, L are of the following form     
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Eringen’s non-local theory
Eringen’s nonlocal theory is used to account 

for the small-scale effect of nanobeams. According 
to Eringen’s nonlocal theory, nonlocal stresses can 
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be calculated using the following relation.
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where NL
ijσ is the nonlocal stress tensor, L
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local stress tensor; k is the kernel function, n is the 
nonlocal parameter calculated using the material 
constant (e0), and the internal characteristic 
length (a) i.e. ( )2

0n e a= ; 0x x−  is the neighborhood 
distance. Therefore, for functionally graded 
materials, nonlocal stresses can be obtained using 
the following constitutive relations.
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The local stresses for the FG beams are 
recovered by setting a nonlocal parameter equals 
to zero ( 0n = ). Using Eq. (18), the stress resultants 
presented in Eq. (12) are obtained as follows:
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Finally, the nonlocal equations of motion in 
terms of unknown displacement variables ( )0 0u ,w ,φ  
are derived by substituting Eq. (19) into Eq. (14).
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Eq. (20) represents the set of equations of 
motion of FG nanobeam. Equations of motion of a 

local beam can be recovered from these equations 
by setting the nonlocal parameter equal to zero  
( 0n = ). The maximum value of n can be infinity. As 
the value of the nonlocal parameter increases, the 
size of the nanobeam decreases.     

In this study, the Navier technique is used 
to obtain analytical solutions for the bending, 
buckling, and free vibration analysis of simply 
supported FG nanobeam. The beam has following 
boundary conditions at x = 0 and x = L.  
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To satisfy the above boundary conditions, the 
unknown variables are assumed in the following 
form of the Fourier series. 
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where ( )1, / , , ,m m mi m L u wα π φ= − = are 
unknown coefficients, and ω  is the natural 
frequency. The transverse uniform load q(x) is also 
expanded in the Fourier sine series as
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where q0 is the maximum intensity of the 
uniform load. Solutions for the bending, buckling, 
and free vibration problems are obtained by 
substituting Eqs. (22) and (23) into the Eq. (20).
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One can note that for bending (N0 = 0) and 
buckling problems, time-dependent terms are 
neglected from the equations of motion whereas 
for the buckling and free vibration problems 
transverse load q(x) is taken as zero. The elements 
of the stiffness matrix [K], mass matrix [M], 
geometric matrix [N], and the displacement vector 
{ }∆ are as follows.
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RESULTS AND DISCUSSION
Solutions of Eqs. (24) through (26) give 

transverse deflections, critical buckling loads, 
and natural frequencies of simply supported 
functionally graded nanobeams. The numerical 
results obtained using the present theory are 
compared with existing literature. The following 
non-dimensional forms and material properties 
are used.

Isotropic nanobeam
E = 1 GPa and µ= 0.3

2
2

04
0

100 12, ,EI Lw w N N L
q L EI EI

ρω ω= = =    �   (28)

         
For the comparison of the present numerical 

results, the cross-sectional dimensions (b×h) of 
the nanobeams are taken as unity (h =1nm, b 
=1nm) and the length of the nanobeams is varied 
as (L = 5,10,20,100) nm. 

FG nanobeam
Ceramic (Al2O3): Ec = 380 GPa, ρ=3800 kg/m3 

and µ= 0.3
Metal (Al): Em =70 GPa, ρ=2700 kg/m3 and µ= 

0.3

( )
3 2

2
04 3

0

100 12, , /m m

m m

E h Lw w N N L h
q L E h E

ρω ω= = =
           

� (29)      

Table 1 presents the non-dimensional 
transverse deflections, critical buckling loads, and 
fundamental frequencies of isotropic nanobeams 
for various nonlocal parameters. The material 
properties and nondimensional form for isotropic 
nanobeams are given in Eq. (28). The present 
numerical results are compared with existing 
literature. Examination of Table 1 reveals that the 
present results are in close agreement with those 
presented by Thai [12], Thai and Vo [13], Thai et al.  
[14], and Aydogdu [18] using different higher-order 
nonlocal theories. The FSDT of Timoshenko [6] and 
the CBT of Bernoulli-Euler [5] underestimate the 
transverse deflection whereas overestimate the 
critical buckling load and fundamental frequencies 
due to neglect of the transverse shear deformation 
effect. It is also observed that the increase in the 
nonlocal parameter increases the transverse 

Table 1. Non-dimensional transverse deflection, critical buckling load, and fundamental frequencies of simply supported isotropic nanobeams (L 
= 10 nm, h = 1 nm, b = 1 nm). 

 
  Nonlocal parameter (n) 
Quantity Theory 0 1 2 3 4 

Transverse deflections ( w ) Present 1.3394 1.4675 1.5956 1.7237 1.8517 
(m = 100) Thai [12] 1.3346 1.4622 1.5898 1.7173 1.8449 
 Thai and Vo [13] 1.3345 1.4621 1.5897 1.7173 1.8449 
 Aydogdu [18] 1.3480 1.4921 1.6362 1.7802 1.9243 
 Timoshenko [6] 1.3125 1.4383 1.5642 1.6900 1.8158 
 Bernoulli-Euler [5] 1.3021 1.4271 1.5521 1.6771 1.8021 

Critical buckling loads ( N )  
Present 

9.6230 8.7591 8.0372 7.4253 6.8993 
(m = 1) Thai [12] 9.6227 8.7583 8.0364 7.4244 6.8990 
 Thai and Vo [13] 9.6231 8.7587 8.0367 7.4247 6.8994 
 Aydogdu [18] 9.6242 8.7597 8.0377 7.4256 6.9001 
 Timoshenko [6] 9.7891 8.9102 8.1753 7.5532 7.0181 
 Bernoulli-Euler [5] 9.8701 8.9833 8.2433 7.6153 7.0752 
Fundamental frequencies ( ) Present 9.7131 9.2753 8.8843 8.5390 8.2316 

(m = 1) Thai [12] 9.7075 9.2612 8.8713 8.5269 8.2196 
 Thai and Vo [13] 9.7077 9.2614 8.8715 8.5271 8.2198 
 Thai et al. [14] 9.7454 9.2973 8.9059 8.5601 8.2517 
 Timoshenko [6] 9.7889 9.3387 8.9459 8.5988 8.2887 
 Bernoulli-Euler [5] 9.8289 9.3769 8.9818 8.6337 8.3229 

 
  

Table 1. Non-dimensional transverse deflection, critical buckling load, and fundamental frequencies of simply supported isotropic 
nanobeams (L = 10 nm, h = 1 nm, b = 1 nm).
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deflection but decreases the critical buckling load 
and fundamental frequency. The effects of various 
values of L/h on the transverse deflection, critical 
buckling load and the fundamental frequencies 
are presented in Table 2.

The material properties and nondimensional 
form for FG (Al2O3/Al) nanobeams beams are 
given in Eq. (29). Table 3 shows a comparison of 
non-dimensional transverse deflections of simply 
supported FG nanobeam subjected to uniform 
load. The numerical results are presented for 
various values of nonlocal parameter (n = 0, 1, 2, 
3, 4) and the power-law coefficients (k = 0, 0. 5, 
1, 5, 10). At k = 0, the nanobeam is ceramic-rich 
whereas, at k = ∞, the nanobeam is metal-rich. 
The authors have also generated numerical results 
using Reddy’s TSDT [10], the FSDT [6], and the CBT 
[5] for comparison purpose. Table 3 shows that the 
present theory is in good agreement with Reddy’s 
theory while predicting transverse deflections. 
Non-dimensional transverse deflection increases 
with an increase in the power-law coefficient as 
well as a nonlocal parameter. The variations of 
transverse deflection are also shown in Fig. 3(a) 
and Fig. 3(b).

Effect of nonlocal parameter and the power-
law coefficients on the critical buckling load of 
simply supported FG nanobeam is presented in 
Table 4. For the comparison purpose, the critical 
buckling loads are also generated using Reddy’s 
theory, the FSDT, and the CBT. From Table 4 it 
is observed that the present theory is in good 
agreement with Reddy’s TSDT [10], and the FSDT 
[6] whereas the CBT [5] overestimates the critical 
buckling loads due to neglect of the transverse 
shear deformation. When the nanobeam is made 
up of purely ceramic, it undergoes a large critical 
buckling load. As the stiffness of the nanobeam 
decreases the non-dimensional critical buckling 
load also decreases. Similarly, as the nonlocal 
parameter increases the non-dimensional critical 
buckling load decreases. Fig. 4(a) and Fig. 4(b) 
show the variations of non-dimensional critical 
buckling load with nonlocal parameter and the 
power-law coefficient.

The effects of the nonlocal parameter and 
the power-law coefficient on the fundamental 
frequencies of simply supported FG nanobeam are 
presented in Table 5. Fundamental frequencies 
obtained using the present theory are compared 

 
Table 2. Non-dimensional transverse deflection, critical buckling load, and fundamental frequencies of simply supported isotropic nanobeams 

(h = 1 nm, b = 1 nm). 
 

   Nonlocal parameter (n) 
Quantity L/h Theory 0 1 2 3 4 

Transverse deflections ( w ) 5 Present 1.4347 1.5716 1.7045 1.8415 1.9804 
(m = 100)  Thai [12] 1.4320 1.5673 1.7027 1.8381 1.9735 
 10 Present 1.3394 1.4675 1.5956 1.7237 1.8517 
  Thai [12] 1.3346 1.4622 1.5898 1.7173 1.8449 
 20 Present 1.3134 1.4406 1.5637 1.6919 1.8161 
  Thai [12] 1.3102 1.4359 1.5615 1.6872 1.8128 
 100 Present 1.3036 1.4301 1.5567 1.6802 1.8047 
  Thai [12] 1.3024 1.4274 1.5525 1.6775 1.8025 

Critical buckling loads ( N )  
5 Present 8.9807 8.1703 7.5010 6.9244 6.4338 

(m = 1)  Thai [12] 8.9519 8.1477 7.4761 6.9068 6.4181 
 10 Present 9.6230 8.7591 8.0372 7.4253 6.8993 
  Thai [12] 9.6227 8.7583 8.0364 7.4244 6.8990 
 20 Present 9.8259 8.9415 8.2128 7.5767 7.0491 
  Thai [12] 9.8067 8.9258 8.1900 7.5664 7.0310 
 100 Present 9.8916 9.0066 8.2535 7.6235 7.0926 
  Thai [12] 9.8671 8.9807 8.2405 7.6130 7.0743 
Fundamental frequencies ( ) 5 Present 9.3016 8.8636 8.4996 8.1592 7.8644 
(m = 1)  Thai [12] 9.2745 8.8482 8.4757 8.1466 7.8530 
 10 Present 9.7131 9.2753 8.8843 8.5390 8.2316 
  Thai [12] 9.7075 9.2612 8.8713 8.5269 8.2196 
 20 Present 9.8474 9.3938 9.0075 8.6573 8.3451 
  Thai [12] 9.8281 9.3763 8.9816 8.6328 8.3218 
 100 Present 9.8874 9.4220 9.0241 8.6725 8.3689 
  Thai [12] 9.8679 9.4143 9.0180 8.6678 8.3555 

 
  

Table 2. Non-dimensional transverse deflection, critical buckling load, and fundamental frequencies of simply supported isotropic 
nanobeams (h = 1 nm, b = 1 nm).
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Table 3. Non-dimensional transverse deflections ( w ) of simply supported FG nanobeams under uniform load (L = 10 nm, h = 1 nm, m = 100). 
 

  Power-law coefficients (k) 
Theory n 0 0.5 1 5 10 
Present 0 2.9556 4.6467 6.0409 9.2826 10.2290 
 1 3.2345 5.0839 6.6093 10.1542 11.1889 
 2 3.5134 5.5211 7.1776 11.0258 12.1488 
 3 3.7922 5.9583 7.7462 11.8976 13.1088 
 4 4.0711 6.3955 8.3145 12.7692 14.0688 
Reddy [10] 0 2.9501 4.5373 5.8959 9.02040 9.94030 
 1 3.2322 4.9713 6.4599 9.88200 10.8892 
 2 3.5142 5.4053 7.0240 10.7436 11.8381 
 3 3.7963 5.8394 7.5880 10.7436 12.7871 
 4 4.0783 6.2734 8.1521 12.4669 13.7360 
Timoshenko [6] 0 2.9382 4.5203 5.8727 8.94790 9.84910 
 1 3.2192 4.9526 6.4345 9.80340 10.7904 
 2 3.5003 5.3850 6.9964 10.6588 11.7317 
 3 3.7814 5.8173 7.5582 11.5143 12.6729 
 4 4.0625 6.2496 8.1201 12.3698 13.6142 
Bernoulli-Euler [5] 0 2.8783 4.5218 6.0413 9.66760 9.97800 
 1 3.1546 4.9546 6.6465 11.2823 10.9778 
 2 3.4309 5.3874 7.2516 12.8970 11.9777 
 3 3.7072 5.8202 7.8567 14.5117 12.9775 
 4 3.9835 6.2529 8.4618 16.1262 13.9772 

 
  

Table 3. Non-dimensional transverse deflections ( w ) of simply supported FG nanobeams under uniform load (L = 10 nm, h = 1 nm, 
m = 100).

 

       
Fig. 3. The variation of the non-dimensional transverse deflection with (a) the nonlocal 

parameter (b) the power-law coefficient for simply supported FG nanobeam subjected to a 
uniform load (L/h = 10). 

  

Fig. 3. The variation of the non-dimensional transverse deflection with (a) the nonlocal parameter (b) the power-law coefficient for 
simply supported FG nanobeam subjected to a uniform load (L/h = 10).

with those obtained using theories of Reddy [10], 
Timoshenko [6] and Bernoulli-Euler [5]. The present 
results are in good agreement with the TSDT of 
Reddy. Similar to critical buckling loads, the FSDT 
and the CBT also overestimate the fundamental 
frequencies for all values of nonlocal parameters 
and the power-law coefficients. Fig. 5(a) and 
Fig. 5(b) present the variation of fundamental 
frequency with the nonlocal parameter and the 
power-law coefficient. 

Merits and demerits of the present study
The present study highlights the transverse 

deflection, critical buckling loads and the 
fundamental frequencies for isotropic and 
functionally graded nanobeams using a new non-
polynomial type higher-order nonlocal beam 
theory. Merits and demerits of the present theory 
are summarized as below. 
1)	 The present theory gives the realistic variation 

of transverse shear stress through-the-
thickness of the beam satisfying boundary 
conditions at the top and bottom surfaces of 
the beam. 

2)	 This theory does not require any shear 
correction factor to account for strain energy 
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Table 4. Non-dimensional critical buckling load ( N ) of simply supported FG nanobeams (L = 10 nm, h = 1 nm, m = 1). 
 

  Power-law coefficients (k) 
Theory n 0 0.5 1 5 10 
Present 0 51.9768 33.7972 26.0103 16.9966 15.4215 
 1 47.3073 30.7614 23.6740 15.4693 14.0365 
 2 43.4079 28.2262 21.7218 14.1947 12.8793 
 3 40.1025 26.0770 20.0682 13.1131 11.8992 
 4 37.2647 24.2312 18.6483 12.1858 11.0564 
Reddy [10] 0 52.2328 33.9636 26.1384 17.0803 15.4975 
 1 47.5402 30.9129 23.7906 15.5454 14.1056 
 2 43.6216 28.3652 21.8288 14.2646 12.9427 
 3 40.3000 26.2054 20.1670 13.1777 11.9578 
 4 37.4483 24.3506 18.7401 12.2458 11.1109 
Timoshenko [6] 0 52.2588 33.9806 26.1514 17.0893 15.5054 
 1 47.5642 30.9279 23.8026 15.5534 14.1126 
 2 43.6436 28.3792 21.8398 14.2716 12.9487 
 3 40.3200 26.2184 20.1770 13.1847 11.9638 
 4 37.4673 24.3626 18.7491 12.2518 11.1169 
Bernoulli-Euler [5] 0 53.7996 34.9825 26.9223 17.5922 15.9624 
 1 48.9661 31.8398 24.5045 16.0114 14.5285 
 2 44.9305 29.2161 22.4838 14.6925 13.3307 
 3 41.5088 26.9913 20.7719 13.5726 12.3168 
 4 38.5721 25.0815 19.3021 12.6127 11.4439 

 
 
  

due to shear deformation. 
3)	 A comparison of the numerical results through 

various tables show that the present theory 
is accurate and efficient for the analysis of 
nanobeams.

4)	 In the present study, the theory is applied for 
the analysis of simply supported boundary 
conditions of the beam. However, this theory 
can be extended for the analysis of other 
boundary conditions of the beam as well. 

CONCLUSIONS
In this paper, an inverse trigonometric shear 

deformation theory is applied for bending, 
buckling, and free vibration analyses of functionally 

graded nanobeams. Eringen’s nonlocal theory 
is used to capture the small size effects. The 
equations of motion are derived using Hamilton’s 
principle. Analytical solutions are obtained using 
Navier’s technique. The present results are 
compared with existing literature, Reddy’s theory, 
the FSDT, and the CBT and agree well with those 
of higher order theories. It is concluded that 
the transverse deflections of nonlocal beams 
are greater than those of local beams, whereas 
nonlocal parameters reduce the buckling loads 
as well as fundamental frequencies. Based on the 
comparison of the numerical results obtained for 
various sizes of the nanobeams, various values of 
nonlocal parameter and the power-law coefficient 

Table 4. Non-dimensional critical buckling load ( N ) of simply supported FG nanobeams (L = 10 nm, h = 1 nm, m = 1).

 

       
Fig. 4. The variation of the non-dimensional critical buckling load with (a) the nonlocal 

parameter (b) the power-law coefficient for simply supported FG nanobeam subjected to a 
uniform axial force (L/h = 10). 

  

Fig. 4. The variation of the non-dimensional critical buckling load with (a) the nonlocal parameter (b) the power-law coefficient for 
simply supported FG nanobeam subjected to a uniform axial force (L/h = 10).
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accounting for the gradation of material 
properties, finally it is concluded that the present 
theory is capable enough to capture the nano 
size effects of nanobeams as well as gradation of 
material properties.
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Fig. 5. The variation of the non-dimensional fundamental frequency with (a) the nonlocal parameter (b) the power-law coefficient 
for simply supported FG nanobeam (L/h = 10).
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