Structure, optical and photoluminescent properties of hybrid polymer nanocomposites on the base PP+CdS/ZnS

Document Type : Reasearch Paper

Authors

1 Baku State University, Azerbaijan, Department Chemical Physics of Nanomaterials, AZ 1148, Zahid Khalilov Str. 23, Baku, Azerbaijan.

2 Baku State University, Azerbaijan, Department Chemical Physics of Nanomaterials, Nanoresearch Laboratory, AZ 1148, Zahid Khalilov Str. 23, Baku, Azerbaijan.

Abstract

In this work, PP+CdS/ZnS transparent hybrid polymer nanocomposites were synthesized and studied. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive (EDS), and UV-spectroscopy analysis. It was found that the bandgap of PP+1%CdS/ZnS; PP+3%CdS/ZnS, and PP+5%CdS/ZnS; PP+10%CdS/ZnS nanocomposites is 5.2 eV, 5.1 eV, 4.6 eV, respectively. SEM analysis showed that the ZnS and CdS nanoparticles are evenly distributed in the polymer matrix. Furthermore, the average size of nanoparticles in the PP+3%CdS/ZnS, PP+5%CdS/ZnS nanocomposite is 40-54 nm, 29-56 nm, respectively. Photoluminescence properties of hybrid PP+CdS/ZnS nanocomposites were also investigated. It was established that introduction of ZnS and CdS semiconductor nanoparticles into the polypropylene matrix leads to expanding the region of the spectral sensitivity of hybrid nanocomposites. The photosensitivity of PP+CdS/ZnS nanocomposite films was also investigated.

Keywords


1. Pomogailo A. D., Dzhardimalieva G. I., (2012), Controlled thermolysis of macromolecule-metal complexes as a way for synthesis of nanocomposites. Macromol. Symp. 317–318:  198–205.
2. Maharramov A. M., Ramazanov M. A., Nuriyeva S. Q., Hajiyeva F. V., Hasanova U. A., (2018), Influence of preparation technology-cristallisation temperature-time regime on supramolecular structure and properties of PP/Ag2S nanocomposites. J. Optoelectron. Biomed.  10: 37-42.
3. Maharramov A. M., Ramazanov M. A., Nuriyeva S. G., Hajiyeva F. V., (2017), Structure and thermic properties of polymer nanocomposites on the basis of polypropylene and silver sulphide nanoparticles PP/Ag2S. LDS. 1: 14-18.
4. Maharramov A. M., Ramazanov M. A., Ahmadova A. B., Hajiyeva F. V, Hasanova U. A., (2016), Preparation and study of nanocomposite structures based on polypropylene and silver sulphide. J. Chalcogenide Let. 13: 317-324.
5. Maharramov A. M., Ramazanov M. A., Hajiyeva F. V., Amirov S. S., (2016), Investigation  the structure and dielectric properties of PP+PbS nanocomposites synthesized on the basis of  polypropylene polymer irradiated  by accelerated  heavy ions. cristallization temperature-time regime on supramolecular structure and properties of PP/Ag2S nanocomposites. J. Optoelectron. Biomed. 8: 15-20.
6. Magerramov A. M., Ramazanov M. A., Hajiyeva F. V., Hasanova U. A., (2015), Structure and photoluminescence properties of polymer nancomposites on the basis of polypropylene  PP+Ag2S. cristallisation temperature-time regime on supramolecular structure and properties of PP/Ag2S nanocomposites. J. Optoelectron. Biomed. 7: 39-45.
7. Magerramov A. M., Ramazanov M. A., Hajiyeva F. V., (2014), Structure and dielectric properties of nanocomposites on the basis of high-density polyethylene and lead sulfide. J. Chalcogenide Lett.  11: 175-180.
8. Palma L., Bavasso I, Sarasini F., Tirillò J., Puglia D., Dominici F., Torre L., Galluzzi A., Polichetti M., Ramazanov M. A., Hajiyeva F. V., Shirinova H. A., (2018), Effect of nano-magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites. Polym. Compos. 39: 1742-1750.
9. Ramazanov M. A., Hajiyeva F. V., Babayev Y. A., Valadova G. V., Nuriyeva S. G., Shirinova H. A., (2020), Synthesis and optical properties of PVC+CdS based nanocomposites. J. Elastomers Plast. 52: 159-166.
10. Singh V., Sharma P. K., Chouhan P., (2010), Surfactant mediated phase transformation of CdS nanoparticles. Mater. Chem. Phys. 121: 202-207.
11. Shanmugam G., Isaiah M. V. G., (2017), Structural and optical properties of PbS-PVA, CdS-PVA and PbS-CdS-PVA nanocomposite films. Int. J. Chemtech. Res. 10: 229-234.
12. Zhang Y., (2015), Synthesis and photoluminescence study of zinc sulfide–poly(arylene ether ketone) nanocomposite materials. High. Perform. Polym. 28: 198-205.
13. Kumar R. Ch., Chandra V. K.,  Chandra B. P., (2015), Synthesis, characterization and photoluminescence studies of undoped ZnS nanoparticles. Superlattice Microst. 84: 132-143.
14. Krishnakumar V., Shanmugam G., (2015), Influence of Mg dopant on the third-order nonlinear optical properties of CdS-PVP nanocomposite films. Mater. Lett. 141: 149-152.
15. Khanna P. K., Gokhale R. R., Subbarao V. S., Narendra S., Jun K. W., Das B. K., (2005), Synthesis and optical properties of CdS/PVA nanocomposites. Mater. Chem. Phys. 94: 454-459.
16. Elashmawi I. S., Hakeem N. A., Soliman S. M., (2009), Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites. Mater. Chem. Phys. 115: 132-135.
17. Xiu W. C., Shu F. S., Zong G. Y., (2009), Large third-order optical nonlinearity of cadmium sulphide nanoparticles embedded in polymer thin films. Chin. Phys. Lett. 26:  097804-097807.
18. Mondal S. P., Dhar A., Ray S. K., Chakraborty A. K., (2009), Bonding, vibrational and electrical characteristics of CdS nanostructures embedded in polyvinyl alcohol matrix. J. Appl. Phys. 105: 084309-084313.
19. Omed G. A., (2015), Synthesis and optical band gap investigation of PVA/CdS nanocomposite films. JZS. 17: 185-192.
20. Thambidurai M., Muthukumarasmy N., Murugan N., Dhayalan S. V. A., Balasundarabhu R., (2011), Structural and optical characterization of Ni- doped CdS quantum. J. Mater. Sci. 46: 3200-3206.
21. Ali Z. I., Abd Salam F. H., Saleh H. H., Youssef H. A., Sokary R., (2015), Characterization of semiconductor CdS/Poly(vinyl alcohol) nanocomposites using ultraviolet/visible spectrophotometry. Int. J. Chem. Mater. Env. Res. 2: 17-29.
22. Novruzova A. A., Ramazanov M. A., Chianese A., Hajiyeva F. V., Maharramov A. M.,  Hasanova U. A., (2017),  Synthesis, structure and optical properties of PP+PbS/CdS hybrid nanocomposites.  Chem. Eng. Trans. 60: 61-66.
23. Ramazanov M. A., Maharramov A. M., Chianese A., Novruzova A. A., Maharramova G. Y., (2018), The effect of electric discharge treatment on the optical properties of hybrid PP/PbS/CdS nanocomposites. J. Ovonic Res.14: 113-117.
24. Magerramov A. M., Ramazanov M. A., Hajiyeva F. V., (2008), Properties and structure formation of cadmium sulfide nanocomposites with polypropylene. Optolectron. Adv. Mater. Rapid Commun. 2: 743-745.
25. Magerramov A. M., Ramazanov M. A., Hajiyeva F. V., (2009), Role of phase interactions in formation of photoluminescent and dielectric properties of polymeric nanocomposites on the base PP+CdS. Optolectron. Adv. Mater. Rapid Commun. 3: 1348-1353.
26. Magerramov A. M., Ramazanov M. A., Hajiyeva F. V., (2010), The effect of the electric-thermal polarization and discharge treatment on the charge state, strength, and photoluminescence properties of polypropylene and cadmium sulphide. Surf. Eng. Appl. Electrochem. 46: 501-504.
27. Magerramov A. M., Ramazanov M. A., Gadzhieva F. V., Alieva S. G., (2011), The effect of the temperature-time mode of crystallization on the morphology and properties of nanocomposites based on polypropylene and cadmium sulfide. Surf. Eng. Appl. Electrochem. 247: 428-432.
28. Magerramov A. M., Ramazanov M. A., Mustafaeva A. Kh., (2010), Photoluminescence in nanocomposites based on PVDF+ZnS.  Surf. Eng. Appl. Electrochem. 46: 281-284.
29. Pattabi M., Saraswathi A. B., (2010), Optical properties of CdS–PVA nanocomposites. Compos. Interfaces 17: 103–111.
30. Wu X. C., Bittner A. M., Kern K., (2005), Synthesis, photoluminescence and adsorption of CdS/Dendrimer nanocomposites. J. Phys. Chem. B. 109: 230-239.
31. Datta A., Panda S. K., Chaudhuri S., (2007), Synthesis, optical and electrical properties of CdS/ZnS Core/Shell Nanorods. J. Phys. Chem. C. 111: 17260-17264.
32. Fang D. F., Zhang Z. M., Wang Z. P., Ding Z. J., (2012), Study of photoluminescence of CdS/ZnS Core/Shell quantum dots. Phys. Procedia. 32: 920-925.
33. Kumar H., Kumar M., Barman P. B., Ragini R., (2014), Singh stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots. Appl. Phys. A. 117: 1249-1258.
34. Limin Q., Jiming M., Humin Ch., Zhenguo Z., (1996), Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles. Colloid Surf. A-Physicochem. Eng. Asp. 111: 195-202.
35. Wang L., Zhipeng L., Shouqing N., Quanqin Z., Hongwei W., (2011), Synthesis and photocatalytic activity of one dimensional CdS@TiO2 core-shell heterostructures. Nano-Micro Lett. 3: 6-11.
36. Qutub N., Pirzada B. M., Umar K., Mehraj O., Muneer M., Sabir S., (2015), Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core–shell nanocomposites Physica E Low Dimens. Syst. Nanostruct.74: 74–86.
37. Shih-Yuan L., Mei-Ling W., Hsin-Lung.Ch., (2003), Polymer nanocomposite containing CdS–ZnS core–shell particles: Optical properties and morphology. Appl. Phys. A. 93: 5789-5793.