[1] Azari A., Kalbasi M., and Rahimi M., (2014), CFD and experimental investigation on the heat transfer characteristics of alumina nanofluids under the laminar flow regime. Brazil. J. Chem. Eng. 31: 469-481.
[2] Ghadimi A., Saidur R., and Metselaar H., (2011), A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat and Mass Trans. 54: 4051-4068.
[3] Abu-Nada E., Masoud Z. N., Oztop H. F., Campo A., (2010), Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49: 479-491.
[4] Murshed S., Leong K. C., Yang C., (2005), Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. Therm. Sci. 44: 367–73.
[5] Das S. K., Choi S. U.S., Yu W., Pradeep T., (2008), Nanofluids: Science and technology. Nanofluides. pp. 9.
[6] Karthik R., Harish Nagarajan R., Raja B., Damodharan P., (2012), Thermal conductivity of CuO–DI Water Nano fluids using 3-x measurement technique in a suspended micro-wire. Exp. Therm. Fluid Sci. 40: 1–9.
[7] Kucharska B., Krawczynska A., Rożniatowski K., Zdunek J., Poplawski K., Sobiecki J. R., (2017), The effect of current types on the microstructure and corrosion properties of Ni/NanoAl2O3 composite coatings. Mater. Technol. 51: 403–411.
[8] Ghazvini M., Akhavan-Behdadi M. A., Rasouli E., Raisee M., (2012), Heat transfer properties of nanodiamond–engine Oil nanofluid in laminar flow. Heat Transf. Eng. 33: 525–532.
[9] Leong K. Y., Saidur R., Kazi S. N., (2010), Performance investigation of an automotive car radiator operated with nanofluid-based coolants nanofluid as a coolant in a radiator. Appl. Therm. Eng. 30: 2685-2692.
[10] Leong K. Y., Saidur R., Kazi S. N., Mamun A. H., (2010), Performance investigation of an automotive car radiator operated with nanofluidbased coolants (nanofluid as a coolant in a radiator). Appl. Therm. Eng. 30: 2685-2692.
[11] Syam Sundar L., Sharma K., Naik M., Singh M., (2013), Empirical and theoretical correlations on viscosity of nanofluids :A review. Renew. Sustain. Energy. 25: 670–686.
[12] Pugalenthi P., Jayaraman M., Subburam V., (2019), Study of the microstructures and mechanical properties of aluminium hybrid composites with SiC and Al2O3. Mater. Technol. 53: 49–55.
[13] Pastoriza-Gallego M. J., Casanova C., Legido J. L., Pineiro M. M., (2011), CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equil. 300: 188-196.
[14] Singh P., Venkatachalapathy S., Kumaresan G., (2014), Heat transfer studies on condensation using heat pipes. Proceedings of applied mechanics and materials, switzerland: Trans Tech Publication Inc. 592: 1617-1621.
[15] Turkyilmazoglu M., (2015), Analytical solutions of single and multi-phase models for the condensation of nanofluid film flow and heat transfer. Europ. J. Mech. 53: 272-277.
[16] El Mghari H., Louahlia-Gualous H., Lepinasse E., (2015), Numerical study of nanofluid condensation heat transfer in a square microchannel. Numeric. Heat Transf. 68: 1242-1265.
[17] Azimi H., Taheri R., (2015), Electrical conductivity of CuO nanofluids. Int. J. Nano Dimens. 6: 77-81.
[18] Sabbaghi S., Orojlou H., Parvizi M., Saboori R., Sahooli M., (2012), Effect of temperature and time on morphology of CuO nanoparticle during synthesis. Int. J. Nano Dimens. 3: 69-73.
[19] Bhuiyan M. H. U., Saidur R., Mostafizur R. M., Mahbubul I. M., Amalina M. A., (2015), Experimental investigation on surface tension of metal oxide–water nanofluids. Int. Communic. Heat and Mass Transf. 65: 82-88.
[20] Pecora R., (1985), Dynamic light scattering: Applications of photon correlation spectroscopy. springer.
[21] Chandrasekar M., Suresh S., and Bose A. C., (2010), Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofuid. Exp. Termal Fluid Sci. 34: 210–216.
[22] Kong L., Sun J., Bao Y., (2017), Preparation, characterization and tribologicalmechanismof nanofuids. RSC Advances. 7: 12599–12609.
[23] Maxwell J. C., (1904), A Treatise on electricity and magnetism. second edition. Oxford University Press, Cambridge. p. 435.
[24] Maxwell Garnett J., (1904), Colours in metal glasses and in metallic films. Philos .Trans. R. Soc. London. 203: 385-420.
[25] Hamilton R. L., Crosser O. K., (1962), Thermal conductivity of heterogeneous tow-component systems. I & EC Fundam. 1:182-191.
[26] Jeffrey D. J., (1973), Conduction through a random suspension of spheres. Proc. R. Soc. London. 335: 355-367.
[27] Lu S., Lin H., (1996), Reflective conductivity of composite containing aligned spherical inclusions of finite conductivity. J. Appl. Phys. 79: 6761–6769.
[28] Timofeeva E. V., Gavrilov A. N., McCloskey J. M., Tolmachev Y. V., (2007), Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. 76: 061203-061208.
[29] Pak B. C., Cho Y. I., (1998), Hydraulic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11: 151-170.
[30] Nagasaka Y., Nagashima A., (1981), Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot wire method. J. Phys. 14: 1435–1440.
[31] Franco A., (2007), An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 27: 2495–2504.
[32] Wen D., Lin G., Vafaei S., Zhang K., (2009), Review of nanofluids for heat transfer applications. Particuology. 7: 141–150.
[33] Wang X.-Q., Mujumdar A. S., (2008), A review on nanofluids—Part I: Theoretical and numerical investigations. Braz. J. Chem. Eng. 25: 613–630.
[34] Einstein A., (1906), Eineneuebestimmung der moleküldimensionen. Annals. Phys. 324: 289–306.
[35] Krieger I. M., Thomas J. D., (1957), A mechanism for non-newtonian flow in suspensions of rigid spheres. Transact. Soc. Rheol. 3: 137–152.
[36] Nielsen L. E., (1970), Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 41: 4626–4627.
[37] Mooney M., (1951), The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6: 162–170.
[38] Batchelor G. K., (1977), The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83: 97–117.
[39] Lundgren T. S., (1972), Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51: 273–299.
[40] Brinkman H. C., (1952), The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20: 571-577.
[41] Chen H., Ding Y., Tan C., (2007), Rheological behaviour of nanofluids. New J. Phys. 9: 367-371.
[42] Frankel N. A., Acrivos A., (1967), On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22: 847–853.
[43] Cheng N. S., Law A. W. K., (2003), Exponential formula for computing effective viscosity. Powder Technol. 129: 156–160.
[44] Kitano T., Kataoka T., Shirota T., (1981), An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheologica. Acta. 20: 207–209.
[45] Bicerano J., Douglas J. F., Brune D. A., (1999), Model for the viscosity of particle dispersions. J. Macromol. Sci. 39: 561–642.
[46] Tseng W. J., Chen C. N., (2003), Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Mater. Sci. Eng. 347:145–153.
[47] Graham A. L., (1981), On the viscosity of suspensions of solid spheres. Appl. Sci. Res. 37: 275–286.
[48] Masoumi N., Sohrabi N., Behzadmehr A., (2009), A new model for calculating the effective viscosity of nanofluids. J. Phys. D. Appl. Phys. 42: 055501-055505.
[49] Pak B. C., Cho Y. I., (1998), Hydraulic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11:151-170.
[50] Kulkarni D. P., Das D. K., Chukwu G. A., (2006), Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J. Nanosci. Nanotechnol. 6: 1150–1154.
[51] Nguyen C. T., Desgranges F., Roy G., Galanis N., Mare T., Boucher S., Angue Mintsa H., (2007), Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int. J. Heat Fluid Flow. 28:1492–1506.
[52] Namburu P. K., Das D. K., Tanguturi K. M., Vajjha R. S., (2009), Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int. J. Therm. Sci. 48: 290–302.
[53] Chandrasekar M., Suresh S., Chandra Bose A., (2010), Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 34: 210–216.
[54] Abu-Nada E., (2009), Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int. J. Heat Fluid Flow. 30: 679–690.
[55] Masoud Hosseini S., Moghadassi A. R., Henneke D. E., (2010), A new dimensionless group model for determining the viscosity of nanofluids. J. Therm. Anal. Calorim. 100: 873–877.
[56] Avsec J., Oblak M., (2007), The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int. J. Heat Mass Transf. 50: 4331–4341.
[57] Keblinski P., Phillpot S. R., Choi S., Eastman J. A., (2002), Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat and Mass Transf. 45: 855-863.
[58] Lee S., Choi S., Li S., Eastman J. A., (1999), Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transf. 121: 280-289.
[59] Heyhat M. M., Kowsary F., Rashidi A. M., Alem Varzane Esfehani S., Amrollahi A., (2012), Experimental investigation of turbulent flow and convective heat transfercharacteristics of alumina water nanofluids in fully developed flow regime. Int. Commun. Heat Mass Transf. 39: 1272–1278.
[60] Ho C., Liu W., Chang Y., Lin C., (2010), Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49:1345–1353.
[61] Vajjha R. S., Das D. K., (2009a), Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 52: 4675–4682.
[62] Das S. K., Putra N., and Roetzel W., (2003a), Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf.46: 851–862.
[63] Raja Sekhar Y., Sharma K. V., (2015), Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. J. Exp. Nanosc. 10: 86-102.
[64] Das S. K., Putra N., Thiesen P., Roetzel W., (2003), Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125: 567-574.