Nano-filler Co-nanoparticles embedded in a Silica aerogel matrix

Document Type : Reasearch Paper

Authors

1 Department of Physics, University of Mumbai, Kalina, Mumbai-400098, India.

2 SDSM College, Palghar-401404, University of Mumbai, India.

3 University of Jeddah, Collage of Science, Department of Biochemistry-80327, Jeddah, KSA.

Abstract

In present research, we synthesized cobalt-based silica nanocomposites (Co-SiO2) from cobalt nitrate [Co(NO3)2] and tetraethoxysilane (TEOS) precursors by using a simple sol-gel method followed by supercritical drying techniques. The physicochemical and textual properties of the as synthesized nano composites were thoroughly investigated. The results indicated that the Co-SiO2 aerogels demonstrated homogeneous dispersion cobalt nanoparticles within silica matrix with mesoporous morphology, large specific surface area (802 m2/g) and larger pore size (9 nm) with less volume shrinkage. The physico-chemical properties of the cobalt based silica nanomaterial were characterized by XRD, SEM, N2 adsorption-desorption and FTIR techniques. Cobalt-based silica nanocomposites can be produced using TEOS-based precursor and supercritical drying techniques. The prepared (Co-SiO2) nanocatalyst due to its magnetic nature with higher surface area (802 m2/g) can be utilized in many emerging fields such as catalysis, water desalination, water splitting, gas-sensing application and organic pollutant degradation.

Keywords


  1. Shinde R. A., Aadole V. A., (2021), Anti-microbial evaluation, experimental and theoretical insights into molecular structure, electronic properties, and chemical reactivity of (E)-2-((1H-indol-3-yl) methylene)-2, 3-dihydro-1H-inden-1-one. Appl. Organomet. Chem. 2: 48-58.
  2. Sahebnasagh S., Fadaee Kakhki J., Ebrahimi M., Bozorgmehr M., Abedi M., (2021), Pre-concentration and determination of fluoxetine in hospital wastewater and human hair samples using solid-phase µ-extraction by Silver nanoparticles followed by spectro-fluorimetric. Chem. Methodol. 5: 211-218.
  3. Farhadi B., Ebrahimi M., Morsali A., (2021), Microextraction and determination Trace amount of propranolol in aqueous and pharmaceutical samples with oxidized multiwalled carbon nanotubes. Chem. Methodol. 5: 227-233.
  4. Fazal-ur-Rehman M., Qayyum I., (2020), Biomedical scope of gold nanoparticles in medical sciences; an advancement in cancer therapy. J. Medic. Chem. Sci. 3:399-407.
  5. Nabipour H., Hu Y., (2020), Nanohybrid based on layered zinc hydroxide with salicylic acid drug: Investigation of the structure and controlled release properties. J. Medic. Chem. Sci. 3: 235-244.
  6. Deng X., Tuysuz H., (2014), Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 4: 3701-3714.
  7. Dhawale D.,  Bodhankar P., Sonawane N., Sarawade P. B., (2019), Fast microwave-induced synthesis of solid cobalt hydroxide nanorods and their thermal conversion into porous cobalt oxide nanorods for efficient oxygen evolution reaction. Sustain. Energy & Fuels. 3: 1713-1719.
  8. Bodhankar P., Chunduri A., Dhawale D. S.,  Sarawade P. B., Vinu A., (2019), Fine-tuning the water oxidation performance of hierarchical Co3O4 nanostructures prepared from different cobalt precursors. Sustain. Energy & Fuels. 5: 1120-1128.
  9. Warang T., Fernandes R., Bazzanella N., Miotello A., (2013), Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye. Appl. Catal. B. 132-133: 204-211.
  10. Lou Y., Wang L., Zhao Z., Zhang Y., Zhang Z., Lu G., Guo Y., (2014), Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Appl. Catal. B. 146: 43-49.
  11. Amonette J. E., Matyáš J., (2017), Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microp. Mesop. Mater. 250: 100-119.
  12. Tai Y., Tajiri K., (2008), Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl. Catal. A: General. 342: 113-118.
  13. Yousefi Amiri T., Moghaddas J., (2015), Cogeled copper–silica aerogel as a catalyst in hydrogen production from methanol steam reforming. Int. J. Hydrogen Energy. 40: 1472-1480.
  14. Lin Q., Yang G., Chen Q., Fan R., Yoneyama Y., Wan H., Tsubaki N., (2015),  Design of a hierarchical meso/macroporous zeolite-supported cobalt catalyst for the enhanced direct synthesis of isoparaffins from syngas. Chem. Cat. Chem. 7: 682-689.
  15. Bittner M., Helmich L., Nietschke F., Geppert B., Oeckler O., Feldhoff A., (2017), Porous Ca3Co4O9 with enhanced thermoelectric properties derived from Sol–Gel synthesis. J. Eur. Ceram. Soc. 37: 3909-3915.
  16. Kahraman F., Madre M. A., Rasekh S., Salvador C., Bosque P., Torres M. A., Diez J. C., Sotelo A., (2015), Enhancement of mechanical and thermoelectric properties of Ca3Co4O9 by Ag addition. J. Europ. Ceram. Soc. 35: 3835-3841.
  17. Khedkar M. V., Somvanshi S. B., Humbe A. V., Jadhav K. M., (2019), Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J. Non-Crystalline Solids. 511: 140-146.
  18. Ji X., Zhou Q., Qiu G., Yue C., Guo M., Chen F., Zhang M., (2018), Preparation of monolithic silica-based aerogels with high thermal stability by ambient pressure drying. Ceram. Int. 44: 11923-11931.
  19. Jadhav S., Sarawade P., (2020), Synthesis and characterization of Nickel nitrate as additive into SiO2 matrix by supercritical drying method. Available at SSRN 3567113.
  20. Sarawade P. B., Kim J-K., Hilonga A., (2010), Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci. 12: 911-918.
  21. Sarawade P. B., Kim J-K., Kim H-K., (2007), High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl. Surf. Sci. 254: 574-579.
  22. Sarawade P. B., Shao G. N., Quang D. V., Kim H. T., (2013), Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure. Appl. Surf. Sci. 287: 84-90.
  23. Li J., Xu X., Hao Zh., (2008), Mesoposous silica supported cobalt oxide catalytic removal of benzene. J. Porous Mater. 15: 163-169.
  24. Bhagat S. D., Kim Y-H., Ahn Y-S., (2006), Textural properties of ambient pressure dried water-glass based silica aerogel beads: One day synthesis. Microp. Mesop. Mater. 96: 237-244.
  25. Sarawade P. B., Quang D. V., Hilonga A., (2012), Synthesis and characterization of micrometer-sized silica aerogel nanoporous beads. Mater. Lett. 81: 37-40.
  26. Sarawade P. B., Kim J. K., Park J. K., (2006), Influence of solvent exchange on the physical properties of sodium silicate based aerogel prepared at ambient pressure. Aeros. and Air Quality Res. 6: 93-105.
  27. Sarawade P. B., (2011), Nanostructured silica aerogel. LAP Lambert Academic Pub. AG & Company KG.
  28. Hilonga A., Kim J. K., Sarawade P. B., (2009), Reinforced silver-embedded silica matrix from the cheap silica source for the controlled release of silver ions. Appl. Surf. Sci. 255: 8239-8245.
  29. Hilonga A., Kim J. K., Sarawade P. B., (2010), Mesoporous titania–silica composite from sodium silicate and titanium oxychloride. Part II: One-pot co-condensation method.  J. Mater.  Sci. 45: 1264-1271.
  30. Al-Oweini R., El-Rassy H., (2009), Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Molec. Struc. 919: 140-145.
  31. Hair L. M., Owens L., Tillotson T., (1995), Local, nano- and micro-structures of mixed metal oxide aerogels for catalyst applications. J. Non-Cryst. Solids. 186: 168-176.
  32. Han X., Williamson F., Bhaduri G. A., (2015), Synthesis and characterisation of ambient pressure dried composites of silica aerogel matrix and embedded nickel nanoparticles. J. Supercrit. Fluids. 106: 140-144.
  33. Santos G. A., Santos C. M. B., Da Silva S. W., (2012), Sol–gel synthesis of silica–cobalt composites by employing Co3O4 colloidal dispersions. Collo. Surf. A: Physicochem. Eng. Aspec. 395: 217-224.
  34. Liang Y., Ouyang J., Wang H., (2012), Synthesis and characterization of core–shell structured SiO2@YVO4 : Yb3+, Er3+ microspheres. Appl. Surf. Sci. 258: 3689-3694.
  35. Sarawade P. B., Kim J. K., Hilonga A., (2010), Recovery of high surface area mesoporous silica from waste hexafluorosilicicacid (H2SiF6) of fertilizer industry. J. Hazard. Mater. 173: 576-580.