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Abstract
In this paper, the buckling behavior and nonlinear vibrations of graphene nanosheets in the magnetic field 
are studied analytically. By considering mechanical and magnetic interactions, new relationships have been 
proposed for the forces exerted by the magnetic field. The nonlinear governing equation is derived using 
Kirchhoff 's thin plate theory in conjunction with the nonlocal strain gradient theory of elasticity and von 
Karman's nonlinear strain-displacement relation. The nonlinear governing equation is discretized using 
the Galerkin method. According to the method of multiple scales, the approximate analytical solutions are 
extracted. For the three considered boundary conditions, nonlinear natural frequencies and amplitude-
frequency curves are computed for different values of magnetic field and nonlocal parameters. The results 
show that increasing the nonlocal parameter and applying a magnetic field reduces the flexural stiffness 
and increases the in-plate compressive force which results in reducing the natural frequency. In addition, 
excessive magnification of the magnetic field causes static buckling. The value of the critical magnetic field is 
highly dependent on the type of boundary conditions.
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INTRODUCTION
With the development of nanotechnology, 

application of the nanoparticles has been increased 
in many structures due to their unique properties 
[1-3]. Nanoparticles such as Al2O3 [4-6], TiO2 [7, 8], 
Cu [9, 10], SiO2 [11], CNT [12, 13], and graphene 
nanosheets are one of the essential components in 
industrial applications which expose them to work 
under the magnetic medium of varying mechanical 
and magnetohydrodynamic loads [14-16]. Due to 
their considerable mechanical properties as well as 
very high natural frequencies (in the range of above 
GHz), these nanosheets have found a wide range 
of applications in the mechanical nanosensors as 
one of the most important nano-electromechanical 
systems (NEMS). Caused by the difficulty of 

performing experimental tests on the NEMS, 
the use of the analytical models and continuum 
mechanics to study the dynamic behavior of these 
systems has been considered by many researchers 
[17].

As it was previously mentioned, graphene 
nanosheets possess unique properties including 
high hardness, high mechanical strength, very 
high electrical and thermal conductivity, flexibility, 
and magnetic properties. Due to these properties, 
graphene has been widely used in various fields 
of human life such as agriculture, medicine, 
electronics, transportation, defense, and so on. 
Many studies have been conducted to investigate 
the vibration and buckling behavior of graphene 
sheets [18-21]. Aghababaei and Reddy [22] 
rewrote the third-order shear deformation theory 
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of plates using Eringen’s linear theory of nonlocal 
elasticity, which could simultaneously apply small-
scale effects and quadratic variables of shear strain 
and thus shear stress in plate thickness. Murmu 
and Pradhan [23] implemented Eringen’s linear 
theory of nonlocal elasticity to study the vibration 
response of monolayer graphene sheets. Ebrahimi 
and Barati [24] studied the vibrational behavior of 
graphene sheets located on an elastic foundation 
under the influence of in-plane magnetic fields 
using the theory of nonlocal strains. Jalali and 
Ghorbanpour [25] studied the nonlocal vibration 
of double-walled graphene nanosheets, which are 
bonded together by an elastic medium and affected 
by a magnetic field under different boundary 
conditions. Murmu et al. [26] studied the effect 
of magnetic fields on the transverse vibration 
behavior of monolayer graphene nanosheets 
located on an elastic foundation using the improved 
nonlocal elasticity theory. In their study, the in-
plane magnetic field was applied to the graphene 
nanosheets. The intensity of the magnetic field 
was calculated using Lorentz equations, and the 
effect of different magnetic field parameters on 
the behavior of the system was investigated.  
Using the differential quadrature method, Esmaeili 
and Biglari [27] solved the governing equation on 
the lateral vibration of a single-layer graphene 
nanosheet under the influence of an in-plane two-
dimensional magnetic field for different boundary 
conditions. In their study, the governing equation 
on the vibration of the nanosheet was derived 
using nonlocal theory and considering the Lorentz 
magnetic force. Farajpour et al. [28] studied the 
buckling of circular graphene nanosheets placed 
on the Winkler-Pasternak elastic foundation using 
the non-local elasticity theory. Samaei et al. [29] 
used the Levy solution model to investigate the 
bending response of monolayer graphene sheets 
under the temperature field as the external 
mechanical load. They obtained the differential 
equations governing the thermomechanical 
response based on Eringen’s equations of non-
local elasticity by combining the two-variable 
sheet theory and using the Mindlin plane theory. 
Pradhan [30] discussed the buckling behavior of 
monolayer rectangular graphene sheets using the 
nonlinear elastic rectangular sheet model and the 
higher-order shear deformations theory, taking 
into account quantum effects.

Allahyari et al. [31] employed a multiple-scale 
perturbation method to analyze nonlinear free 

vibration of graphene nanoplate incorporating 
surface effects. Eringen’s nonlocal theory as well 
as the surface elasticity theory of Gurtin and 
Murdoch is used to consider small scale effect. 
Rong et al. [32] extracted the equations of the 
buckling of orthotropic graphene nanosheets 
using Eringen’s nonlocal theory and solved these 
equations using the finite difference method. 
They investigated the buckling of the rectangular 
nanosheets under uniform and non-uniform linear 
in-plane loadings. The results of their study show 
that the critical buckling load without a nonlocal 
dimension is always less than or equal to the 
corresponding classical buckling critical load. 
Nonlinear forced vibrations of initially curved 
rectangular single-layer graphene sheets were 
investigated by Saadatmand et al. [33]. Mortazavi 
et al. [34] used classical molecular dynamics 
simulations to explore the thermal conductivity 
and mechanical response of two main structures.

Among all of the mentioned properties, 
graphene is an application in many applications 
such as energy storage, sensors, electronics, 
graphene field-effect transistors, and more. 
Magnetic force microscopy signals have recently 
been detected from whole pieces of mechanically 
exfoliated graphene nanosheets, and magnetism 
of the two nanomaterials was claimed based on 
these observations. In these systems graphene 
nanosheets are under different tip voltages, 
electrical current, and magnetic fields [35]. As an 
example, Dhakal and Rai [36] studied magnetic 
field control of current through model graphene 
nanosheet junctions within the framework of the 
tight-binding approximation.

Based on the available literature, the free and 
forced vibrations of graphene nanosheets have 
been considered by researchers from different 
aspects [37]. Despite the increased knowledge 
about graphene nanosheets applications over the 
last two decades, a few attentions has been paid 
to the possible effect of electromagnetic force 
on the vibrational behavior of nanostructures. 
Also, a study on the vibration behavior and 
nonlinear buckling of graphene nanosheets 
affected by electromagnetic charges is not found 
in the literature. Accordingly, in this research, 
the vibration and buckling behavior of graphene 
nanosheets in the presence of electromagnetic 
charges are studied using nonlocal theory. To 
apply more realistic assumptions, taking into 
account the effects of magnetic interactions and 
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the created displacement fields, new relationships 
are proposed for electromagnetic interaction 
forces. The electromagnetic force and momentum 
resultants are calculated using Maxwell’s 
equations. Then, using Newton’s second law, 
the governing equations of motion are derived. 
Finally, after discretizing the equations using 
the Galerkin method, the nonlinear equation is 
solved using the multiple time scales method. The 
effects of geometric and physical parameters on 
changes in natural frequencies, buckling loads, 
and amplitude-frequency curves of the graphene 
nanosheets are studied.

MATERIALS AND METHODS
As it can be seen in Fig. 1, a rectangle graphene 

nanosheet with length xl , width yl and thickness 
h is considered According to the nonlocal strain 
theory, the nonlocal constitutive equation is 
expressed as follows [18]:

( )2 2
01 : , ( )nl C e aµ σ ε µ− ∇ = =

 
(1)

in which C ,ε and nlσ  represents the fourth-
order elasticity tensor, strain and nonlocal stress 
tensor respectively. µ  is the scale parameter, e0 
is constant appropriate to each material and a is 
internal characteristic length. 2∇  is the Laplacian 
operator which is expressed as follows:
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Using Eq. (1), two-dimensional nonlocal 
constitutive relationships can be expressed as 
follows:
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where E , G and ν represent Young’s modulus, 
shear modulus and Poisson’s ratio, respectively.

Using Kirchhoff’s theory of plates, the 
displacement fields are expressed as follows [22]:
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 where 1u and 2u  are the in-plane 
displacements of each arbitrary point of the plate 
in the x and y directions, also 3u is the transverse 
displacement of the plate along the z-axis. u and 
v  are the displacement of the mid-plane of the 
plate. 
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Fig. 1. Mathematical model of graphene nanosheet located in the magnetic field. 
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where 
2
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h

h
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−
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−
=   and ( , , )zF x y t is used to show the external forces applied 

by the magnetic field and mechanical forces. xN , yN and xyN represent the resultant forces. xM , 

yM and xyM represent the resultant momentums per unit length along the x- and y-axes, respectively, 

and are determined using nonlocal strain theory as follows: 
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   Using Equations (8), (9) and (13), the momentum resultants are obtained as follows: 
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The nonlocal stress resultant of the nanoplate 
can be expressed as follows:

/2

/2
/2

/2
/2

/2

,

,

,

h nl
xx xxh

h nl
yy yyh

h nl
xy xyh

M z dz

M z dz

M z dz

σ

σ

σ

−

−

−

=

=

=

∫
∫
∫

 
            
     (10)

  Taking into account the nonlocal theory and 
external forces, as well as disregarding the in-
plane inertial forces, the transverse equilibrium 
equation of the graphene nanosheet is obtained 
as follows:

 (11)
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= ∫  and 

( , , )zF x y t is used to show the external forces applied 
by the magnetic field and mechanical forces. xN , 

yN and xyN represent the resultant forces. xM , yM
and xyM represent the resultant momentums per 
unit length along the x- and y-axes, respectively, 
and are determined using nonlocal strain theory 
as follows:
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Using Equations (8), (9) and (13), the 
momentum resultants are obtained as follows:

( )
2 2

2
2 21 xx
w wM D D

x y
µ ν∂ ∂

− ∇ = − −
∂ ∂

        (13)
                                                 

( )
2 2

2
2 21 yy
w wM D D

y x
µ ν∂ ∂

− ∇ = − −
∂ ∂

 
         (14)

( ) ( ) ( )
2

2 21 1 1xy yx
wM M D

x y
µ µ ν ∂

− ∇ = − − ∇ = −
∂ ∂

                             
 (15)

where ( )3 212 1D Eh ν= −  is the flexural stiffness 
of the nanosheet.

By applying the linear operator 21 µ− ∇  to each 
side of the equilibrium equation (12) and using 
the relations (14) - (16), the nonlocal equation of 
motion of the nanosheet is obtained as follows:

( ) ( )

4 2 2

4 2 2 4

2
2 2

2

2

1 1 ( , , )z

w w wD
x x y y

wh F x y t
t

ρ µ µ

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ ∂ 

∂
− − ∇ + − ∇

∂

 
        (16)

 
 

In-plane membrane forces appear in large 
deformations of plates. Assume that this element 
is subject to the in-plane per length forces of iN
, so the equilibrium equations along the x and y 
axes are obtained based on Fig. 2 as follows:

  0xyx NN
x y

∂∂
+ =

∂ ∂
                          

 (17)

0y xyN N
y x

∂ ∂
+ =

∂ ∂

 
        (18)
   

It has been shown that the effect of 
perpendicular membrane forces on the transverse 
deflection of the nanosheet can be obtained using 
the equilibrium equation in the z-direction [38-40]. 
According to the force equilibrium of the element 
shown in Fig. 3 and ignoring the high-power terms, 
the total membrane force in the vertical direction 
is obtained as follows:

 2 2 2

2 2( , , ) 2z x y xy
w w wF x y t N N N

x y x y
∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

 
        (19) 

Adding the transverse force obtained in the 
above relation to Equation (17) we have:



58

T. Pourreza et al.

Int. J. Nano Dimens., 13 (1): 54-70, Winter 2022

( )

( ) ( )

4 2 2 2
2

4 2 2 4 2

2 2 2
2 2

2 2

2 1

1 2 1x y xy z

w w w wD h
x x y y t

w w wN N N P
x y x y

ρ µ

µ µ

 ∂ ∂ ∂ ∂
+ + = − − ∇ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
+ − ∇ + + + − ∇ ∂ ∂ ∂ ∂ 

    
 (20)

Equation (21) represents the differential 
equation governing the vibrations of graphene 
nanosheets exposed to a magnetic field. In 
Equation (20), the nonlocal resultant stresses of 
the nanosheet can be expressed as:

/2 /2 /2

/2 /2 /2
, ,

h h hnl nl nl
xx xx yy yy xy xyh h h
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 (21)

Using Equations (3) - (5), the above equations 
can be simplified as follows:
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Finally, by using Equation (8) and ignoring the 
displacement fields in the x- and y- directions, the 
in-plane forces are obtained as:
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Fig. 2. In-plane forces in a graphene element.    

   

Fig. 2. In-plane forces in a graphene element.

 
Fig. 3. The free-body diagram of nanoplate element.  

   

Fig. 3. The free-body diagram of nanoplate element.



59Int. J. Nano Dimens., 13 (1): 54-70, Winter 2022

T. Pourreza et al.

Because graphene nanosheets have high 
electrical conductivity properties, so according 
to the Maxwell equations, the electromagnetic 
equations governing the system will be as follows 
[41]:

0

10, , ,f mχ µ
∇⋅ = ∇× = = =B H J M H H B

                       
 (24)  

where B , H , fJ , M  and ∇  are the 
magnetic field intensity, the magnetic flux density, 
the density-current vector,  the magnetization 
vector, and the gradient operator, respectively.

Considering the magnetic field perpendicular 
to the plate and the absence of electrical current, 

( )00,0, B=B the electromagnetic forces and 
momentums can be obtained as follows. The 
details of their extraction are given in the previous 
work of the authors [41].
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Non-dimensional equation governing the 
transverse vibrations of graphene nanosheet 
located in the magnetic field

Assuming that the system is under the external 
harmonic force of 0 sinM

zP P tω= and has structural 
damping of c , and total applied load expressed as

( , , ) M EMm EMf
z z z zP x y t P P P= + + . Substituting Equations 

(23) and (25)-(27) in Equation (20) the governing 
equation of transverse vibration of the graphene 
nanosheet located in the magnetic field is obtained 
as follows:
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 (28)

where the left-hand side the first term is the 
flexural stiffness, the second term is damping, 
and the third term is the inertia force. On the 
right-hand side, the resultants magnetic force and 
mechanical external force are observed. 

If the non-dimensional variables are defined 
as:
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The equation of motion (28) can be re-written 
as follows:
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 (30) 

In the following, for abbreviation, the 
superscript on the variables is ignored. 

Solving the equations
Applying the Galerkin method

The Galerkin method is used to find the 
approximate solution of differential equations 
whose exact solution cannot be calculated 
[42-44]. In this method, the transverse 
displacement of graphene nanosheets is 
considered as follows:
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1 1
( , , ) ( ) ( ) ( )mn m n mn

m n
w x y A X x Y yτ η τ

∞ ∞

= =

=∑∑
                                  

 (31)  

in which ( )mX x  and ( )nY y are the vibration 
mode shapes of the nanosheet. mnA is the 
unknown constant of amplitude coefficient and 

( )mnη τ  is the response of the time part. In this 
study, three types of boundary conditions are used 
for the analysis. These boundary conditions are:

The first boundary condition: All the edges of 
the nanosheets are simply supported (SSSS).

sin( )mX m xπ=      (32)

sin( )nY n yπ=   (33)

The second boundary condition: the two 
opposite edges are simply supported and the 
other two edges are clamped (SCSC).

sin( )mX m xπ=    (34)

[ ](cosh( ) cos( ) sinh( ) sin( ) )n n n n n nY y y a y yλ λ λ λ= − − −   (35)

Third boundary condition: all edges are 
clamped (CCCC)

[ ](cosh( ) cos( ) sinh( ) sin( ) )m m m m m mX x x a x xλ λ λ λ= − − −  (36)

[ ](cosh( ) cos( ) sinh( ) sin( ) )n n n n n nY y y a y yλ λ λ λ= − − −  (37) 

Which in relations (36) - (38), mλ , nλ , ma
and na constants, are obtained using the method 
proposed in Ref. [45]. By placing the hypothetical 
answer of Eq. (32) in the equation of motion (31), 
and by multiplying the sides of the above equation 
by m nX Y  and integrating on the nanosheet surface, 
the equation of motion was obtained as the 
following form:
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1 1 1 1 1 1 1 1 10 0 01 2N S X Y X Y X Y X Y dxdySµ ′ ′ ′= − ∇ − +∫ ∫

 Solve using the multiple time scales method
In order to use the multiple time scales 

method, by dividing the sides of Eq. (38) by M
and using variable change of η εψ= and assuming 
the order of Cξ η is equal 22 Cε ξ η and sinP τΩ is 
equal 3 sinPε τΩ , we would have:

2 2 2 2
0

2 3 2

2
sin

C B N
G P

ψ ω ψ ε ξ ψ ε ψ

ε ψ ε τ

+ = − − −

+ Ω

                          
 (44)

 
where 0 K Mω = is the frequency of the 

corresponding linear system and the – sign 
indicates the division of the variable by M .

To use the multiple time scales method, the 
answer of Eq. (45) is considered as follows [35]:

( ) ( ) ( ) 2
2 0 0 1 2 1 0 1 2, , , , , , ( )T T T T T T T Oψ τ ε ψ εψ ε= + + 

( ) ( ) ( ) 2
2 0 0 1 2 1 0 1 2, , , , , , ( )T T T T T T T Oψ τ ε ψ εψ ε= + +                              (45)

where 0T τ= represents fast time and 1T ετ=  
and 2

2T ε τ= is the slow time. Therefore, the 
first and second derivatives can be expressed as 
follows:

 

( )

2
2

0 1 2 2

2 2 2
0 0 1 1 0 2

,

2 2

d dD D D
d d
D D D D D D

ε ε
τ τ

ε ε

= + + =

+ + +
                 (46) 

To investigate the response around the 
initial resonance, the parameter σ  is defined 
considering the excitation frequency Ω  around 
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the natural frequency 0ω according to Eq. (47).

2
0ω ε σΩ = +                                                           (47)    

 Substituting Eqs. (45) and (46) and using Eq. 
(47) and unifying coefficients of different powers 
of ε in both sides, the equations are obtained as:

2 2
0 0 0 0 0D ψ ω ψ+ =    (48)

 2 2 2 2
0 1 0 1 0 1 0 0 02D D D B Nψ ω ψ ψ ψ+ = − −   (49)
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where the general answer of Eq. (48) can be 
written as:

0 1 2 0 0 1 2 0 0( , ) exp( ) ( , ) exp( )A T T i T A T T i Tψ ω ω= + −         (51)

 By placing 0ψ in Eq. (49) one would have:

2 2
0 1 0 1 0 1 0 0

2 2
0 0 0

2 exp( )

exp(2 )

D i D A i T

B N A i T AA

ψ ω ψ ω ω

ω

+ = − −

 + 

 
          (52)

By removing the secular terms [46] in relation 
(52), one would have 

1 0D A =  which shows 2( )A A T=

. Therefore, the solution of Eq. (48) would be as:

 2
2 20

1 0 0 0 02
0

1 12 exp(2 ) exp( 2 )
3 3

B N AA A i T A i Tψ ω ω
ω

 = − + + −  

 
                     (53)   

By substituting 0ψ and 1ψ in Eq. (50) we will 
have:
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 (54)

where the prime represents the derivative 
with respect to 2T  and the NST represents the 

terms corresponding to 0exp( 3 )mni Tω± . To remove 
secular sentences from the above relation you the 
following relation can be used:

( )22
0 2
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10 12 ( ) 3 exp( ) 0
3 2o

B N
i A CA G A A P i Tω ξ σ
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          (55)

( )22
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10 12 ( ) 3 exp( ) 0
3 2o

B N
i A CA G A A P i Tω ξ σ

ω

 
 ′ + + − − =
 
 

To solve the above equation, 
1 exp( )
2

A a iλ= . By 
placing this relation in Eq. (55) and separating the 
real and imaginary parts, one would have:

0

sin
2
Pa Caξ γ
ω

′ = − +
                                                

    (56)
  

( )22 2
0 0 3

3
0 0

9 10
cos

24 2
G B N Pa a
ω

λ γ
ω ω

−
′ = −

 
    (57) 

where:

2Tγ σ λ= − (58)

    By removing λ from relations (56) and (57) we 
will have:

( )22 2
0 0 3

3
0 0

9 10
cos

24 2
G B N Pa a a
ω

γ σ γ
ω ω

−
′ = − +

                           
    (59)

In order to calculate the steady-state motion 
response, it is assumed that 0a γ′ ′= = . In this 
case, the unknowns a  and γ  which are the 
answers to Eqs. (56) and (59) can be obtained as 
follows:

( ) ( )
222 2

2 0 02 3
3 2
0 0

9 10
24 4

G B N PC a a a
ω

ξ σ
ω ω
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 (60)
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The parameter α  is defined as 
2 2 2 3
0 0(9 10( ) ) 24G B Nα ω ω= −  [46]. When 0α >

nonlinearity will have a hardening effect and for
0α <  nonlinearity will have a softening effect. 

Besides, for 0α = nonlinear behavior would be 
disappeared. Equation (60) is an implicit equation 
between parameters a  and σ , and the amplitude 
of the excitation force, by which the curve of the 
frequency response function can be plotted. 
Finally, the second-order approximation response 
of the graphene vibrations in the magnetic field is 
obtained as follows:

2
2 20

0 02
0

1cos( ) os(2 2 ) ( )
6

B Na a Oεψ ω τ λ ω τ λ ε
ω

= + + + +
             

         (62) 

where a  and γ  are obtained using equations 
(60) and (61).

RESULTS AND DISCUSSIONS
In this section, numerical results for graphene 

nanosheets located in a magnetic field for three 
different boundary conditions including SSSS, SCSC 
and CCCC are presented. The mechanical properties 
of graphene nanosheets are considered as 
Young’s modulus 1.02TPaE = , density 32300kg mρ = , 
thickness 0.335nmh = , and Poisson’s ratio 0.36ν =  
[47]. In addition, the electrical characteristics are 
considered as magnetic constant 1.5Tmχ = and 

2
0

74  1 N A0πµ −×=  [48].

Validation
By considering linear terms and ignoring 

nonlinear terms from the nanosheet equations of 
motion, the linear natural frequencies of the system 
can be obtained. In Table 1, the obtained natural 
frequencies obtained by the local and nonlocal 
models for square graphene are compared with the 
results of Ref. [49]. According to this table, it can 
be seen that the obtained results are completely 
consistent with the results of Ref. [49] and this 
shows the high accuracy of the present method. 
Also, in Table 2, the natural frequency of a simply 
supported single layer graphene nanosheet (E = 
1.02TPa, h = 0.34 nm, ρ = 2300 kg / m3, lx = ly = 10 
nm) have been compared with the exact solution 
results presented in Refs. [50] and [51]. As it can 
be seen, the numerical results obtained here have 
an acceptable consistency with the results of the 
exact solution.

Linear vibrations
First, linear vibration analyzes are performed 

on square graphene nanosheets and the effects 
of boundary conditions and small size parameter 
on the first non-dimensional natural frequency 
of square graphene nanosheets are considered. 
Tables 3-5 show the effect of magnetic field 
intensity and small size parameters on the first 
non-dimensional natural frequency of graphene 
nanosheets under SSSS, CCCC, and SCSC boundary 

Table 1. Validation of the frequency ratios of square nanosheet. 
 

µ 
non loc
1 1 

Ref. [49]  Present results 
0  1.0000  0.9999 
0.5  0.9762 0.9762
1.0  0.9139  0.9139 
1.5  0.8321  0.8321 
2  0.7574  0.7574 

 
   

 
 

Table 2. Comparison of the natural frequency of a single layer graphene nanosheet with SSSS boundary conditions.  
 

µ=1 µ=0  
Exactb Present result Exactb Exacta Present result 
9.67400 9.6715310.558610.558610.5546 ω1 (THz) 
21.6246 21.6223 26.4753 26.4753 26.4761 ω2 (THz) 
37.4075 37.4056 52.7295 52.7295 52.7283 ω3 (THz) 

a

2 2D m n
h a b

 


         
     

 , taken from Ref. [51] 

b

        
2 2

2 2 2 231 1
12

D m n
a bh h m a n b m a n b

 
      

                            

, taken from Ref. [50] 

 
   

Table 1. Validation of the frequency ratios of square nanosheet.

Table 2. Comparison of the natural frequency of a single layer graphene nanosheet with SSSS boundary conditions.
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conditions. As it can be seen, generally, by 
increasing the small size parameter and magnetic 
field intensity, the natural frequency decreases 
and the quantity of this decrease depends on 
the boundary conditions. For example, for the 
nanosheet under the SSSS boundary condition, 

0.1µ = increasing 0B from 0 to 50, would result 
in decreasing the first natural frequency from 
17.18 Hz to 9.57 Hz, which indicates a decrease of 
about 44% in the first natural frequency. Hence, 
it can be concluded that the intensity of the 
magnetic field has a significant effect on reducing 
the equivalent stiffness of the structure and 
consequently the vibration characteristics of the 

nanosheets. In addition, the nonlocal parameter 
reduces the equivalent stiffness of nanosheets. 
For SSSS nanosheet and for 0 20B = , the natural 
frequency decreases by about 67% by increasing 
µ from 0 to 0.5.

Figs. 4 to 6 show the effect of magnetic field 
intensity and nonlocal parameters on the natural 
frequency of graphene nanosheet with SSSS, CCCC, 
and SCSC boundary conditions, respectively. These 
results also show that increasing the intensity of 
the magnetic field reduces the natural frequency. 
According to Eq. (31), the magnetic field has 
two different effects on the nanosheet: first, it 
reduces the flexural stiffness of the nanosheet, 

Table 3. The non‐dimensional natural frequency of the graphene nanosheet with SSSS Boundary conditions. 
 

Magnetic field (B0) 
nonlocal parameter (µ) 

0  0.1  0.2  0.4  0.5 
0  19.7391  17.1808  13.0726  7.97991  6.57947 
5  19.6709  17.1214  13.0274  7.95175  6.55270 
10  19.4685 16.9421 12.8951 7.86825 6.48835 
20  18.6182  16.2085  12.3302  7.52595  6.20605 
30  17.1174  14.8958  11.3364  6.91779  5.70465 
40  14.7528  12.8406  9.77025  5.96345  4.91758 
50  10.9953 9.57082 7.28180 4.44458 3.66516 
60  1.62822  1.41718  1.07832  0.65817  0.54274 

 
   

Table 4. The non‐dimensional natural frequency of the graphene nanosheet with CCCC Boundary conditions. 
 

Magnetic field (B0) 
nonlocal parameter (µ) 

0  0.1  0.2  0.4  0.5 
0  36.6299  35.1807  31.6867  23.9183  20.7973 
5  36.5799  35.1327  31.6435  23.8857  20.7689 
10  36.4292 34.9388 31.5132 23.7874 20.6834 
20  35.8205  34.4033  30.9866  23.3899  20.3377 
30  34.7822  33.4061  30.0884  22.7119  19.7482 
40  33.2743  31.9578  28.7839  21.7272  18.8692 
50  31.2287 29.9931 27.0143 20.3915 17.7306 
60  28.5299  27.4011  24.6797  18.6292  16.1983 
70  24.9767  23.9793  21.5978  16.3029  14.1755 
80  20.0857  19.2911  17.3752  13.1154  11.4504 
90  12.4175 11.9263 10.7418 8.10832 7.05027 

 
   

 
Table 5. The non‐dimensional natural frequency of the graphene nanosheet with SCSC Boundary conditions. 

 

Magnetic field (B0) 
nonlocal parameter (µ)

0 0.1 0.2 0.4 0.5 
0  29.0801  26.8612  22.2684  14.8759  12.5043 
5  29.0258 26.7619 22.2268 14.8481 12.4809 
10  28.8623  26.6112  22.1016  14.7645  12.4106 
20  28.1989  25.9995  21.5936  14.4251  12.1253 
30  27.0357  24.9467  20.7192  13.8541  11.6343 
40  25.3721 23.3933 19.4229 12.9791 10.9099 
50  23.0255  21.2297  17.6321  11.7787  9.90084 
60  19.7829  18.5624  15.1559  10.1682  8.50657 
70  15.0771  13.9012  11.5454  7.71263  6.48305 
80  6.16713 5.68614 4.72254 3.15479 2.65183 

 

Table 3. The non-dimensional natural frequency of the graphene nanosheet with SSSS Boundary conditions.

Table 4. The non-dimensional natural frequency of the graphene nanosheet with CCCC Boundary conditions.

Table 5. The non-dimensional natural frequency of the graphene nanosheet with SCSC Boundary conditions.
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and second, it applies an in-plane compressive 
force on the nanosheet. This effect reduces the 
flexural stiffness of the graphene nanosheet and 
thus reduces its natural frequency, which can be 
seen in Fig. 4. In addition, it is observed that the 
decreasing effect of the magnetic field on the 
natural frequency also depends on the boundary 
conditions. The maximum reduction of the natural 

frequency is seen for the SSSS nanosheet. Given 
that the magnetic field reduces the natural 
frequency of the system, it can be said that the 
magnetic field causes a softening behavior and 
therefore, excessive increase of the magnetic field 
can cause instability in the system.

As previously concluded, the magnetic field 
generates an in-plane compressive force. Hence, 

  
Fig. 4. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet 

with SSSS boundary conditions. 

  

 

  
Fig. 5. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet 

with SCSC boundary conditions. 

  

 

  

  
Fig. 6. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet 
with CCCC boundary conditions 

   

   

Fig. 4. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet with SSSS boundary 
conditions.

Fig. 5. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet with SCSC boundary 
conditions.

Fig. 6. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet with CCCC bound-
ary conditions.



65Int. J. Nano Dimens., 13 (1): 54-70, Winter 2022

T. Pourreza et al.

it is expected that for a certain amount of this 
force, static instability will occur in the system 
and the nanosheet will undergo static buckling. 
Figs. 7a, 7b, and 7c show the effect of magnetic 
field intensity on the first natural frequency of 
the SSSS, CCCC, and SCSC graphene nanosheets, 
respectively. According to the fig., it is observed 
that an increase 0B  would result in decreasing 
the first natural frequency till for the critical 
magnetic field 0

crB , the first natural frequency 
becomes zero. For this amount of magnetic 
field, static buckling occurs in the system. Based 
on the results of Figs. 7a, 7b, and 7c, it can be 
seen that 0

crB is highly dependent on the type of 
boundary conditions. For example for 0µ =  
when the nanosheet is under the SSSS, CCCC, and 
SCSC boundary conditions, it is obtained as 33.6, 
95.1, and 72.3, respectively.  As expected, the 
critical magnetic field increases for the clamped 
boundary conditions by increasing the stiffness of 
the nanosheet boundary conditions. In addition, 
it is observed that by increasing the nonlocal 
parameter, the natural frequency decreases and as 
a result, the critical magnetic field decreases. The 
main effect of the nonlocal parameter is observed 
for the SSSS boundary conditions. An interesting 
result that is observed for all boundary conditions 
is that for the values   of the critical magnetic field, 
the nonlocal parameter does not affect and the 
value of the critical magnetic field is independent 
of this parameter. The examination of the results 
shows that the small size parameter reduces 
the natural frequencies, and this decrease in 
frequency is due to the decrease in the equivalent 
stiffness of the structure with the increase of this 
parameter. Moreover, the equivalent stiffness, 
which changes by the small size parameter, is 
zero at the critical buckling point. Accordingly, the 

small size parameter has no effect on the critical 
buckling load due the magnetic field. In other 
words, the natural frequency or the equivalent 
stiffness is zero at the critical buckling point, so the 
effect of the small size parameter is neglected on 
the critical buckling load.

Frequency amplitude curves
Frequency curves for graphene nanosheets 

located in the magnetic field can be calculated 
for all boundary conditions using Eq. (61). First, 
the changes of the frequency function curve for 
different values   of magnetic field intensity are 
investigated. Fig. 8-10 show the frequency function 
curves for different values of   and three different 
boundary conditions SSSS, CCCC, and SCSC. As can 
be seen in Fig. 8 (SSSS nanosheet), by increasing 
the intensity of the magnetic field, the amplitude 
curve bends to the left side, which indicates the 
softening behavior of the hard spring as a result 
of the reduction of the equivalent stiffness of the 
structure. In this case, the value of the parameter α 
in Eq. (61), which is negative, increases, and hence 
its value becomes positive for the values   0B greater 
than 30. A similar situation is seen for the CCCC 
nanosheets (Fig. 9). In this case, as the magnetic 
field increases, the amplitude curve bends to the 
left side, which indicates the softening behavior 
of the hardening spring. Again the parameter α 
is negative, and as the magnetic field increases, 
its value tends to be positive. According to Fig. 
10, similar behavior is observed for the SCSC 
nanosheet.

Another important parameter on the vibration 
behavior of nanosheets is the effect of small 
sizes parameter. The effect of small sizes on the 
amplitude curve of the nanosheet located in the 
magnetic field is shown in Figs. 11-13. According 

 

  

  
Fig. 6. Effect of magnetic field intensity and nonlocal parameter on the natural frequency of graphene nanosheet 
with CCCC boundary conditions 

   

   

Fig. 7. Effect of the magnetic field intensity on the first natural frequency of the graphene nanosheet for the (a) SSSS, (b) CCCC, and 
(c) SCSC boundary conditions.
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to the results, it can be seen that for all three 
considered boundary conditions, the increasing µ 
leads to enhance in the hardening behavior, which 
is more significant for SSSS nanosheets. The results 
show that for the CCCC boundary conditions (Fig. 
11) by increasing µ, the value of the α parameter 

decreases and approaches zero, which causes 
the softening behavior of the hard spring. An 
opposite behavior is seen for SSSS (Fig. 12) and 
SCSC (Fig. 13) boundary conditions. Therefore, it 
can be said that in the graphene nanosheets, the 
nonlocal parameter is one of the most influential 

  
Fig. 8. Effect of magnetic field intensity on the frequency curve of graphene nanosheet for SSSS boundary 

conditions. 

  

 

  
Fig. 9. Effect of magnetic field intensity on the frequency curve of graphene nanosheet for CCCC boundary 

conditions. 

  

 

  
Fig. 10. Effect of magnetic field intensity on the frequency curve of graphene nanosheet for SCSC boundary 

conditions. 

   

Fig. 8. Effect of magnetic field intensity on the frequency curve of graphene nanosheet for SSSS boundary conditions.

Fig. 9. Effect of magnetic field intensity on the frequency curve of graphene nanosheet for CCCC boundary conditions.

Fig. 10. Effect of magnetic field intensity on the frequency curve of graphene nanosheet for SCSC boundary conditions.
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parameters on their dynamic behavior. Since 
the use of nonlocal theories in the study of the 
dynamic behavior of graphene nanosheets is 
practically inevitable, so in the design and analysis 
of such systems, the effect of nonlocal theories 
and nonlocal parameters should be considered. 

In order to evaluate the accuracy and 
convergence of the proposed analytical method, 

Eq. (44) is numerically solved using the Rang-
Kutta method and the results are compared with 
the time response obtained from the analytical 
solution (Eq. 62) in Fig. 14. As can be seen, the 
multiple time scales method provides the solution 
of the nonlinear equation of motion with very good 
accuracy and the maximum error in calculating the 
maximum amplitude is about 6%.

  
Fig. 11. Effect of nonlocal parameter on graphene nanosheet frequency curve for CCCC boundary conditions. 

  
 

  
Fig. 12. Effect of nonlocal parameter on graphene nanosheet frequency curve for SSSS boundary conditions. 

  

Fig. 11. Effect of nonlocal parameter on graphene nanosheet frequency curve for CCCC boundary conditions.

Fig. 12. Effect of nonlocal parameter on graphene nanosheet frequency curve for SSSS boundary conditions. 

  
Fig. 13. Effect of nonlocal parameter on graphene nanosheet frequency curve for SCSC boundary conditions. 

   

Fig. 13. Effect of nonlocal parameter on graphene nanosheet frequency curve for SCSC boundary conditions.
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CONCLUSION
In this paper, based on the nonlocal elasticity 

theory, a new mathematical model was proposed 
to study the buckling behavior and nonlinear 
vibrations of graphene nanosheets located in 
a magnetic field. The effect of magnetic fields 
was applied to the equations by considering the 
additional flexural forces and moments created by 
the magnetic field. Analytical study of linear and 
nonlinear vibrations was performed for different 
boundary conditions. Besides, the effects of 
magnetic field intensity and nonlocal parameters 
on static buckling, vibrational frequency, and 
frequency response curve were studied. The 
results show:

- The nonlocal parameter reduces the 
equivalent stiffness of the nanosheets and as its 
value increases, the natural frequency decreases. 

- Increasing the magnetic field, the first natural 
frequency decreases till for the critical magnetic 
field, the first natural frequency becomes zero and 
static buckling occurs in the system. 

- It was observed that by increasing the 
intensity of the magnetic field, the amplitude 
curve bends to the left, which indicates the 
softening behavior of the hard spring as a result 
of reducing the rigidity equivalent to the structure. 

- For all of the selected boundary conditions, 
increasing µ results in enhancing the hardening 
behavior, which is more pronounced for the SSSS 
nanosheets. For the CCCC boundary conditions, 
by increasing µ, the value of α decreases and 
approaches to zero. However, an opposite behavior 
is seen for SSSS and SCSC boundary conditions. 

- It can be said that for the graphene 
nanosheets, the nonlocal parameter is one of the 
most influential parameters on dynamic behavior. 

- An interesting result that is observed for all 
boundary conditions is that for the values   of the 
critical magnetic field, the nonlocal parameter 

does not affect and the value of the critical 
magnetic field is independent of this parameter.

Hence, since the use of nonlocal theories in 
the study of the dynamic behavior of graphene 
nanosheets is practically inevitable, in the design 
and analysis of such systems, the effect of nonlocal 
theories and nonlocal parameters should be taken 
into account.

NOMENCLATURE
l length
h thickness
Amn unknown constant
B magnetic field intensity
C fourth-order elasticity tensor
c structural damping
D flexural stiffness
E Young’s modulus
Fz external force
G shear modulus
H magnetic flux density
J density-current vector
Mx, My, Mxy resultant momentums
M magnetization vector
Nx, Ny, Nxy resultant forces
P0 force amplitude
Pz mechanical force
R0, S0, S1 Nondimensional parameter
u1, u2 plane displacements
u3, w transverse displacement

ε strain tensor

nlσ nonlocal stress tensor

µ scale parameter

Fig. 14. Time response of the system obtained from analytical and numerical methods.
 

Fig. 14. Time response of the system obtained from analytical and numerical methods. 
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ν Poisson’s ratio
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            (6) 

 where 1u and 2u  are the in-plane displacements of each arbitrary point of the plate in the x and y 

directions, also 3u is the transverse displacement of the plate along the z-axis. u and v   are the 

displacement of the mid-plane of the plate.  

                                                     0 z= +ε ε κ                                                           (7)       

where ε is the strain at any point, 0ε and κ represents the nonlinear strain vector of the neutral axis 

and  the curvature vector, respectively. Since the nonlinear vibration is due to the large deformations, 

the von-Karman strain-displacement relations are used as [22]:  
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κ                         (9) 

The nonlocal stress resultant of the nanoplate can be expressed as follows: 
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  Taking into account the nonlocal theory and external forces, as well as disregarding the in-plane 

inertial forces, the transverse equilibrium equation of the graphene nanosheet is obtained as follows: 
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−
=   and ( , , )zF x y t is used to show the external forces applied 

by the magnetic field and mechanical forces. xN , yN and xyN represent the resultant forces. xM , 

yM and xyM represent the resultant momentums per unit length along the x- and y-axes, respectively, 

and are determined using nonlocal strain theory as follows: 
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   Using Equations (8), (9) and (13), the momentum resultants are obtained as follows: 
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curvature vector

ω force-frequency

Ω Nondimensional frequency

τ Nondimensional time
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