Bio-assisted synthesis of bi-metallic (Ag-Zn) nanoparticles by leaf extract of Azadirachta indica and its antimicrobial properties

Document Type : Reasearch Paper

Authors

Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India, 474005.

Abstract

In the last decade, the bio-assisted synthesis of nanoparticles has been significantly exploited seeing the shortfall of chemical synthesis and urgent need to find the substitution. The chemical synthesis of nanoparticles is a rapid process, which might be appealing in various frontiers but has got some serious issues to take care of. In pursuit of finding a process that is cleaner, non-toxic, eco-friendly, low cost, and renewable, natured introduces us to the prospect of biosynthesis. In our study, we have successfully prepared bimetallic nanoparticles through a bio-assisted route. We have formed (Ag-Zn) silver doped zinc oxide nanoparticles with the help of an aqueous leaf extract of Azadirachta indica. Ag-Zn nanoparticles were further characterized by FTIR, P-XRD, SEM-EDX methods. The data obtained from X-ray diffraction has shown the peaks of silver doped zinc at 2θ value 38.1o thereby telling particle size is approx. 12.53 nm size as calculated by Scherrer’s equation. FTIR analysis gave characteristic peaks of functional groups. SEM-EDX confirmed successful doping and grain size of the particle. The study has further characterized the anti-microbial activities of the Ag-Zn BMNPs (Bi-metallic nanopartilces) with the help of the Kirby-Bauer method showing maximum inhibition of Streptococcus aureus species. The result of the study can be advantageous to develop an understanding of the development of nano-based medicine.

Keywords


  1. Senthilkumar N., Nandhakumar E., Priya P., Soni D., Vimalane M., Vetha Potheher I., (2017), Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J. Chem. 41: 10347-10356.
  2. Rudramurthy, G. R., Swamy, M. K., (2018), Potential applications of engineered nanoparticles in medicine and biology: an update. JBIC J. Biol. Inorg. Chem.23: 1185-1204.
  3. Gericke M., Pinches A., (2006), Biological synthesis of metal nanoparticles. Hydrometall. 83: 132-140.
  4. Saxena A., Tripathi R. M., Zafar F., Singh P., (2012), Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Lett. 67: 91-94.
  5. Zang Z., Nakamura A., Temmyo J., (2013), Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Express. 21: 11448-11456.
  6. Sadeghi B., Gholamhoseinpoor F., (2015), A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.  Acta Part A: Molec. Biomol. Spec.134: 310-315.
  7. Zang Z., (2018), Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Phys. Lett. 112: 042106-042110.
  8. Li C., Han C., Zhang Y., Zang Z., Wang M., Tang X., Du J., (2017), Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 Sol. Energy Mater. Sol. Cells. 172: 341-345.
  9. Petrovic Z., Ristic M., Marciuš M., Ivanda M., Durina V., Music S., (2016), Hydrothermal processing of electrospun fibres in the synthesis of 1D ZnO nanoparticles. Lett. 176: 278-282.
  10. Hu J., (2015), Biosynthesis of SnO2 nanoparticles by Fig (Ficus Carica) leaf extract for electrochemically determining Hg(II) in water samples. J. Electrochem. Sci. 10: 10668-10676.
  11. Lok C. N., Ho C. M., Chen R., He Q. Y., Yu W. Y., Sun H., Tam P. K., Chiu J., Che C. M., (2007), Silver nanoparticles: Partial oxidation and antibacterial activities. Biol. Inorg. Chem. 12: 527-534.
  12. Jamdagni P., Rana J. S., Khatri P., Nehra K., (2018), Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides.  J. Nano Dimens.9: 198-208.
  13. Jamdagni P., Khatri P., Rana J. S., (2018), Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity.  King Saud Univ. Sci.30: 168-175.
  14. Jamdagni P., Rana J. S., Khatri P., (2019), Antioxidant activity and antifungal fractional inhibitory concentration indices of zinc oxide nanoparticles in combination with carbendazim, mancozeb, and thiram. Micro & Nano Lett.14: 1037-1040.
  15. Prema P., (2011), Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application, Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, edited by Prof. Angelo Carpi, ISBN: 978-953-307-268-5 InTech.
  16. Sadeghi B., Jamali M., Kia S., Amini N. A., Ghafari S., (2010), Synthesis and characterization of silver nanoparticles for antibacterial activity. J. Nano Dimens. 1: 119-124.
  17. Sadeghi B., Rostami A., Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.  Acta Part A: Molec. Biomolec. Spect.134: 326-332.
  18. Kubo A. L., Capjak I., Vrček I. V., Bondarenko O. M., Kurvet I., Vija H., Kahru A., (2018), Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids and Surf. B: Biointerf.170: 401-410.
  19. Wu K., Yang Y., Zhang Y., Deng J., Lin C., (2015), Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy.  J. Nanomedic. 10: 7241.7245.
  20. Gevorgyan S., Schubert R., Yeranosyan M., Gabrielyan L., Trchounian A., Lorenzen K., Trchounian K., (2021), Antibacterial activity of royal jelly-mediated green synthesized silver nanoparticles. AMB Express. 11: 1-8.
  21. Sadeghi B., Mohammadzadeh M., Babakhani B., (2015), Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.  Photochem. Photobiol. B: Biology.148: 101-106.
  22. Jamdagni P., Rana J. S., Khatri P., (2018), Comparative study of antifungal effect of green and chemically synthesised silver nanoparticles in combination with carbendazim, mancozeb, and thiram. IET Nanobiotechnol.12: 1102-1107.
  23. Danilczuk M., Lund A., Saldo J., Yamada H., Michalik J., (2006), Conduction electron spin resonance of small silver particles. Acta A. Mol. Biomol. Spectrosc. 63: 189-191.
  24. Kim J. S., Kuk E., Yu K. N., Kim J. H., Park S. J., Lee H. J., Kim S. H., Cho M. H., (2007), Antimicrobial effects of silver nanoparticles. 3: 95-101.
  25. Olson M. E., Harmon B. G., Kollef M. H., (2002), Silver-coated endotracheal tubes associated with reduced bacterial burden in the lungs of mechanically ventilated dogs. J. 121: 863-870.
  26. Acharya D., Singha K. M., Pandey P., Mohanta B., Rajkumari J., Singha L. P., (2018), Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria.  Rep. 8: 1-11.
  27. Gordon T., Kopel M., Grinblat J., Banin E., Margel S., (2012), New synthesis, characterization and antibacterial properties of porous ZnO and C-ZnO micrometre-sized particles of narrow size distribution. Mater. Chem. 22: 3614-3623.
  28. Bansal V., Rautaray D., Ahmad A., Sastry M., (2004), Biosynthesis of zirconia nanoparticles using the fungus Fusarium J. Mater. Chem. 14: 3303-3305.
  29. Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S. K., Paknikar K. M., (2002), Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Bioeng. 78: 583-588.
  30. Scarano G., Morelli E., (2003), Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sc. 165: 803-810.
  31. Lengke M. F., Fleet M. E., Southam G., (2007), Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. 23: 2694-2699.
  32. Govindaraju K., Khaleel B. S., Ganesh K. V., Singaravelu G., (2008), Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler Mater. Sci. 43: 5115-5122.
  33. Gardea-Torresdey J. L., Parsons J., Gomez E., Peralta- Videa J., Troiani H., Santiago P., Yacaman M., (2002), Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2: 397-401.
  34. Manceau A., Nagy K. L., Marcus M. A., Lanson M., Geoffroy N., Jacquet T., Kirpichtchikova T., (2008), Formation of metallic copper nanoparticles at the soil−root. Environ. Sci. Technol. 42: 1766-1772.
  35. Ghosh S., Patil S., Ahire M., Kitture R., Gurav D. D., Jabgunde A. M., Kale S., Pardesi K., Shinde V., Bellare J., Dhavale D. D., Chopade B. A., (2012), Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. Nanobiotechnol. 10: 1-9.
  36. Khan M., Adil S. F., Tahir M. N., Tremel W., Alkhathlan H. Z., Al-Warthan A., Siddiqui M. R., (2013), Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. J. Nanomedicine. 8: 1507-1516.
  37. Rai M., Yadav A., (2013), Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol. 7: 117-124.
  38. Shiv Shankar S., Ahmad A., Sastry M., (2003), Geranium leaf assisted biosynthesis of silver nanoparticles. Prog. 19: 1627-1631.
  39. Shiv Shankar S., Ahmad A., Pasricha R., Sastry M. J., (2003), Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Chem. 13: 1822-1826.
  40. Shiv Shankar S, Rai A., Ahmad A., Sastry M., (2004), Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Colloid. Interf. Sci. 275: 496-502.
  41. Maensiri S., Laokul P., Klinkaewnarong J., Prokha S., Promark V., Seraphin S., (2008), Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. Adv. Mater. 2: 161-166.
  42. Vilchis-Nestor A. R., Sanchez-Mendieta V., Camacho- Lopez M. A., Gomez-Espinosa R. M., Arenas-Alatorre J. A., (2008), Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Lett. 62: 3103-3106.
  43. Song J. Y., Kwon E. Y., Kim B. S., (2010), Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Biosyst. Eng. 33: 159-164.
  44. Stauth D., (2007), Studies force new view on biology of flavonoids. Eurek Alert (Oregon State University : USA). 203: 1-3.
  45. Ahmaruzzaman M., Laxmi Gayatri S., (2011), Activated neem leaf: A novel adsorbent for the removal of phenol, 4-Nitrophenol, and 4-Chlorophenol from aqueous solutions. Chem. Eng. Data. 56: 3004-3016.
  46. Gasmalla M. A. A., Yang R., Amadou I., Hua X., (2014), Nutritional composition of stevia rebaudiana bertoni leaf: Effect of drying method.  J. Pharmac. Res.13: 61-65.
  47. Acharya D., Mohanta B., Pandey P., Singha M., Nasiri F., (2017), Optical and antibacterial properties of synthesised silver nanoparticles. Micro & Nano Lett.12: 223-226.
  48. Thakur D., Sharma A., Rana D. S., Thakur N., Singh D., Tamulevicius T., Thakur S., (2020), Facile synthesis of silver-doped Zinc Oxide nanostructures as efficient scaffolds for detection of p-Nitrophenol. Chemosensors.  8: 108-112.
  49. Chauhan A., Verma R., Kumari S., Sharma A., Shandilya P., Li X., Kumar R., (2020), Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Rep. 10: 1-16.
  50. Manandhar S., Luitel S., Dahal R. K., (2019), In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. Trop. Medic. Article ID 1895340.
  51. Zheng Y., Chen C., Zhan Y., Lin X., Zheng Q., Wei K., Zhu J., (2008), Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property. J. Chem. C. 112: 10773-10777.
  52. Siva Vijayakumar T., Karthikeyeni S., Vasanth S., Ganesh A., Bupesh G., Ramesh R., Subramanian P., (2013), Synthesis of silver-doped zinc oxide nanocomposite by pulse mode ultrasonication and its characterization studies.  Nanosc.Article ID 785064.
  53. Duffy L. L., Osmond-McLeod M. J., Judy J., King T., (2018), Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control. 92: 293-300.
  54. Acharya D., Pandey P., Nasiri F., Singha K. M., Mohanta B., (2016), Optical properties of synthesized colloidal silver nanoparticles and their antibacterial effects.  Bionanosc.10: 511-515.
  55. Siddiqi K. S., Ur Rahman A., Husen A., (2018), Properties of Zinc Oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett.13: 1-13.
  56. Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A. L., Galindo R., Souto E. B., (2020), Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials. 10: 292-296.
  57. Javed R., Zia M., Naz S., Aisida S. O., ul Ain N., Ao Q., (2020), Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects.  Nanobiotechnol. 18: 1-15.
  58. Shaikh S., Nazam N., Rizvi S. M. D., Ahmad K., Baig M. H., Lee E. J., Choi I., (2019), Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance.  J. Molec. Sci.20: 2468-2473.
  59. Altemimi A., Lakhssassi N., Baharlouei A., Watson D. G., Lightfoot D. A., (2017), Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 6: 42-43.
  60. Abdal Dayem A., Hossain M. K., Lee S. B., Kim K., Saha S. K., Yang G. M., Cho S. G., (2017), The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles.  J. Molec. Sci. 18: 120-126.
  61. Paiva C. N., Bozza M. T., (2014), Are reactive oxygen species always detrimental to pathogens?  Redox Signal.20: 1000-1037.