[1] Kesavan A. G., Nataraj N., Chen S. M., Lin L. H., (2020), Hydrothermal synthesis of NiFe2O4 nanoparticles as an efficient electrocatalyst for the electrochemical detection of bisphenol. New J. Chem. 44: 7698-7707.
[2] Sivakumar P., Ramesh R., Ramanand A., Ponnusamy S., Muthamizhchelvan C., (2013), Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J. Alloys Compd. 563: 6-11.
[3] Amulya M. A. S., Nagaswarupa H. P., AnilKumar M. R., Ravikumar C. R., Prashantha S. C., Kusuma K. B., (2020), Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Appl. Surf. Sci. Adv. 1: 100023-100026.
[4] Naidu K. C. B., Madhuri W., (2017), Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull. Mater. Sci. 40: 417-425.
[5] Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., (2003), One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15: 353-389.
[6] Yue W., Changhong S., Wei Y., (2010), Fabrication and magnetic properties of NiFe2O4 nanorods. Rare Metals. 29: 385-389.
[7] Raj K., Moskowitz B., Casciari R., (1995), Advances in ferrofluid technology. J. Magn. Magn. Mater. 149: 174-180.
[8] Wang J., Zhua Y. J., Lia W. P., Chen Q. W., (2005), Necklace-shaped assembly of single-crystal NiFe2O4 nanospheres under magnetic field. Mater. Lett. 59: 2101-2103.
[9] Reddy D. H. K., Yunang Y. S., (2016), Spinel ferrite magnetic adsorbents: alternative future materials for water purification. Coord. Chem. Rev. 315: 90–111.
[10] Ishino K., Narumiya Y., (1987), Development of magnetic ferrites: control and application of Losses. Ceram. Bull. 66: 1469–1475.
[11] Srivastava S., Sinha R., Roy D., (2004), Toxicological effects of malachite green. Aquatic toxicol. 66: 319-329.
[12] Tolia J., Chakraborty M., Murthy Z., (2012), Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles. Pol. J. Chem. Technol. 14: 16-21.
[13] Chen C., Lu C., Chung Y., Jan J., (2007), UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 141: 520-528.
[14] Kusuma H. S., Sholihuddin R. I., Harsini M., Darmokoesoemo H., (2016), Electrochemical degradation of malachite green dye using Carbon/TiO2 electrodes. J. Mater. Environ. Sci. 7: 1454-1460.
[15] Miranzadeh M., Afshari F., Khataei B., Kassaee M., (2020), Adsorption and photocatalytic removal of arsenic from water by a porous and magnetic nanocomposite: Ag/TiO2/Fe3O4@GO. Adv. J. Chem. A. 3: 408-421.
[16] Sajjadnejad M., Karimi Abadeh H., (2020), Processing of nanostructured TiO2 and modification of its photocatalytic behavior for methylene blue degradation. Adv. J. Chem. A. 3: 422-431.
[17] Hu K.-h., Meng M., (2013), Degradation of malachite green on MoS2/TiO2 nanocomposite. Asian J. Chem. 25: 5827-5829.
[18] Ameta K., Tak P., Soni D., Ameta S. C., (2014), Photocatalytic decomposition of malachite green over lead chromate powder. Sci. Rev. Chem. Commun. 4: 38-45.
[19] Bansal P., Bhullar N., Sud D., (2009), Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst. Desalin. Water Treat. 12: 108-113.
[20] Soni H., JI N. K., (2014), UV light induced photocatalytic degradation of malachite GREEN on TiO2 nanoparticles. Int. J. Recent Res. Rev. 7: 10-15.
[21] Sols-Casados D., Escobar-Alarcn L., Fernndez M., Valencia F., (2013), Malachite green degradation in simulated wastewater using Nix : TiO2 thin films. Fuel. 110: 17-22.
[22] Khezami L., Taha K. K., Ghiloufi I., El Mir L., (2016), Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles. Water Sci. Technol. 73: 881-889.
[23] Jo W.-K., Parka G. T., Tayade R. J., (2014), Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor. J. Chem. Technol. Biotechnol. 90: 2280-2289.
[24] He H-Y., (2015), Photocatalytic degradations of malachite green on magnetically separable Ni1-xCoxFe2O4 nanoparticles synthesized by using a hydrothermal process. Amer. Chem. Sci. J. 6: 58-68.
[25] Afshar S., Samari Jahromi H., Jafari N., Ahmadi Z., Hakamizadeh M., (2011), Degradation of malachite green oxalate by UV and visible lights irradiation using Pt/TiO2/SiO2 nanophotocatalyst. Sci. Iran. 18: 772-779.
[26] Khademinia S., Behzad M., Kafi-Ahmadi L., Hadilou S., (2018), Hydrothermally synthesized strontium arsenate nanomaterial through response surface methodology. Z. Anorg. Allg. Chem. 644: 221-227.
[27] Azari B., Pourahmad A., Sadeghi B., Mokhtary M., (2019), Preparation and photocatalytic study of SiO2/CuS core-shell nanomaterial for degradation of methylene blue dye. Nanomeghyas. 3: 103-114.
[28] Hajavazzade R., Kargar Razi M., Mahjoub A. R., (2021), Synthesis and characterization of Mg1-xNixAl2O4 and their photocatalytic behaviors towards Congo red under UV light irradiation. Int. J. Nano Dimens. 12: 67-75.
[29] Blourfrosh S. K., Mahanpoor K., (2021) Preparation, characterization and photocatalytic performance of nano α-Fe2O3 supported on metal organic framework of Cd(II) for decomposition of Cefalexin aqueous solutions. Int. J. Nano Dimens. 12: 113-127.
[30] Hosseiny Davarani S. S., Rezayati Zad Z., Taheri A. R., Rahmatian N., (2017), Highly selective solid phase extraction and preconcentration of Azathioprine with nano-sized imprinted polymer based on multivariate optimization and its trace determination in biological and pharmaceutical samples. Mater. Sci. Eng. C. 71: 572–583.
[31] Abdollahi F., Taheri A., Shahmari M., (2020), Application of selective solid-phase extraction using a new core-shell-shell magnetic ionimprinted polymer for the analysis of ultra-trace mercury in serum of gallstone patients. Sep. Sci. Technol. 55: 2758-2771.
[32] Hakimyfard, A., Khademinia, S., (2021), Structural, Magnetic, Optical and Electrochemical Properties of a New Class of α-Fe2O3-Mx-NiFe2O4+δ (M = None, Co2+, Eu3+, Ho3+ and Yb3+) Nanocomposites. J. Supercond. Nov. Magn. 34: 1-9.
[33] Turner M. J., McKinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D., Spackman M. A., (2017). Crystal Explorer 17.5. The University of Western Australia.
[34] Seth S. K., Saha N. C., Ghosh S., Kar T., (2011), Structural elucidation and electronic properties of two pyrazole derivatives: a combined X-ray, Hirshfeld surface analyses and quantum mechanical study. Chem. Phys. Lett. 506: 309-314.
[35] McKinnon J. J., Jayatilaka D., Spackman M. A., (2007), Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 3814-3816.
[36] Spackman M. A., McKinnon J. J., (2002), Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm. 4: 378-392.
[37] Fabbiani F. P. A., Leech C. K., Shankland K., Johnston A., Fernandes P., Florence A. J., Shankland N., (2007), Hirshfeld surface analysis of two bendroflumethiazide solvates. Acta Crystallogr. Sect. C. 63: 659-663.