Phytofabrication of Silver nanoparticles using Abrus precatorius L Seed extract and their antioxidant and antibacterial activity

Document Type : Reasearch Paper

Authors

1 Research Scholar (19212232262039), PG & Research Department of Botany, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.

2 Ethnopharmacology Unit, Research Department of Botany, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India.

3 Research Scholar (18112232262009) PG & Research Department of Botany, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India.

Abstract

The present investigation evaluates the potential of aqueous seed extract of Abrus precatorius L. for the biosynthesis of silver nanoparticles (AgNPs). The structure of AgNPs was authenticated by the changes in colour as well as the UV-vis spectroscopy, which showed an absorbance maxima peak at 441 nm. The scanning electron microscope (SEM) investigation proved the particle shape as well as the X-ray diffraction (XRD) that validated the crystalline character of AgNPs. The AFM study also corroborated the surface morphology of manufactured AgNPs. Fourier Transform Infrared (FTIR) approved the presence of alcoholic, and the phenolic groups co-operated an imperative reduction role in the synthesis method. In vitro, the antioxidant action of both A. precatorius seed extract and AgNPs were scrutinized by DPPH assay. It illustrates the antibacterial activity against the gram negative bacteria Salmonella paratyphi as well as the Escherichia coli. Compared to other NPs, the AgNPs synthesized in this study were smaller in size that exhibited a higher level of antioxidant and antibacterial activity. From the consequences, it is proposed that green synthesized AgNPs could be employed successfully in future biomedical applications.

Keywords


[1] Gunalana S., Sivaraja R., Rajendranb V., (2012), Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Nat. Sci. Mater. 22: 693-700.
[2] Geonmonond R. S., Da Silva A. G. M., Camargo P. H. C., (2018), Controlled synthesis of nobel metal nanomaterials: motivation, principles and opportunities in nanotechnology. Acad. Bras. Cienc. 90: 719-744.
[3] Selim Y. A., Azb M. A., Ragab I., Abd El Azim M. H. M., (2020), Green synthesis of zinc oxide nanoparticals using aqueous extract of Deverra tortuosa and their cytotoxic activities. Rep. 10: 3445-3451.
[4] Smith A. M., Duan M., Rhyner N. M., Ruan G., Nie S. A., (2006), A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Chem. Chem. Phys. 8: 3895-3903.
[5] Kearns G. J., Foster E. W., Hutchison J. E., (2006), Substrates for direct imaging of chemically functionalized SiO2 surfaces by transmission electron microscopy. Anal. Chem. 78: 298-303.
[6] Sadeghi B., Mohammadzadeh M., Babakhani B., (2015), Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. Photochem. Photobiol. B: Biol. 148: 101-106.
[7] Hussain I., Singh N. B., Singh A., Singh H., Singh S. C., (2016), Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 38: 545-560.
[8] Mishra A., Kaushik N. K., Sardar M., Sahal D., (2013), Evaluation of antiplasmodial activity of green synthesis silver nanoparticles. Colloids Surf. B. Biointerf. 111: 713 -721.
[9] Palithya S., Kotakadi V. S., Pechalaneni J., Challagundla V. N., (2018), Biofabrication of silver nanoparticles by leaf extract of Andrographis serpyllifolia and their antimicrobial and antioxidant activity. J. Nano Dimens. 9: 398-407.
[10] Kanwar R., Rathee J., Salunke D. B., Mehta S. K., (2019), Green nanotechnology driven drug delivery assemblies. ACS Omega. 5: 8804-8815.
[11] Lee K. S., El-Sayed M. A., (2006), Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition. Phys. Chem. 110: 19220-19225.
[12] Mekky A. E., Farray A. A., Hmed A. A., Sofy A. R., (2021), Antibacterial and antifungal activity of green synthesized silver nanoparticles using Spinacia oleracea leaves extracts. J. Chem. 64: 3-6.
[13] Sadeghi B., Gholamhoseinpour F., (2015), A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectro Acta Part A: Mol. Biomol. Spect. 134: 310-315.
[14] Sadeghi B., Jamali M., Kia Sh., Amini Nia A., Ghafari S., (2010), Synthesis and characterization of silver nanoparticles for antibacterial activity. Int. J. Nano Dimens. 1: 119-124.
[15] Chinnasamy G., Chandrasekharan S., Kob T. W., Bhatnar S., (2021), Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front Microbiol. 12: 611560.
[16] Sadeghi B., Rostami A., Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spect Acta Part A: Mol. Biomol. Spect. 134: 326-332.
[17] Fatema S., Shirsat M., Farooqui M., Arif P. M., (2019), Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. J. Nano Dimens. 10: 163-168.
[18] Bangale S., Ghotekars., (2019)., Biofabrication of silver nanoparticles using Rosa chinensis L extract for antibacterial activities. J. Nano Dimens. 10: 217-224.
[19] Nahar K., Aziz S., Bashar M. S., Haque Md. A., Al. Reza S. Md., (2020), Synthesis and characterization of silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. J. Nano Dimens. 11: 88-98.
[20] Daphedar A., Ritti M., Patil N., Patil S., Kakkalameli S., Taranath T. C., (2020), Synthesis and characterization of silver nanoparticles from fruit extract of Michelia champaca their antioxidant and antibacterial activity. Int. J. Nano Dimens. 11: 267-276.
[21] Keshari A. K., Srivastava R., Singh P., Yadav V. B., Nath G., (2020), Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayu Inkegra Med. 11: 37-44.
[22] Jabir M. S., Hussien A. A., Soliman G. M., Yaseen N. Y., Dewar Y. H., Alwahibi M. S., Soliman D. A., Rizwana H., (2021a), Green synthesis of silver nanoparticles from Eribotrya japonica extract: A promising approach against cancer cells, proliferation, inflammation, allergic disorders and phagocytosis induction. Cells. Nanomed Biotech. 49: 48-60.
[23] Jabir M. S., Saleh Y. M., Sulaiman G. M., Yaseen N. Y., Satib U. I., Dewir H., Alwatibi M. S., Soliman D. A., (2021b), Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomater. 11: 384-390.
[24] Manoharan S., Balaji R., Aruna A., Niraimathi V., Manikandan G., Babu M. B. V., Vijaya P., (2010), Preliminary phytochemical and cytotoxic property of leaves Abrus precatorius J. Har. Med. Toxlcol. 4: 21-24.
[25] Brinda P., Saikala P., Purushothaman K. K., (1981), Pharmacognostic studies on Merugan Kizhangu. Bull. Med. Eth. Bot. Res. 3: 84-96.
[26] Mithal A. K., Kaler A., Beneju U. C., (2012), Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron Dausricum. Nano Biomedic. Eng. 4: 118-124.
[27] Bauer A. W., Kirby W. M., Sherris J. C., Turck M., (1996), Antibiotic susceptibility testing by a standardized single disc method. J. Clin. Pathol. 45: 493-496.
[28] Patil M. P., Kim G. D., (2017), Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Microbiol. Biotechnol. 101: 79-92.
[29] Vankatesan J., Kim S. K., Shim M. S., (2017), Antimicrobial, antioxidant and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia Nanomater. 6: 235-241.
[30] Patil M. P., Palme J., Simeon N. C., Jim X., Lin X., Nagabir D., Kim N. H., Tarte N. H., Kim G. D., (2017), Silver–silver chloride nanoparticles and their antibacterial and anticancer activities. J. Chem. 41: 1363-1371.
[31] Nahar K., Rahamau Md. H., Khan G. M. A., Islam Md. K., Al-Reza S. Md., (2021), Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. Asian J. Green Chem. 5: 135-150.
[32] Palithya S., Gaddam S. A., Kotakadi V. S., Penchalaneni J., Golla N., Krishna S. B. N., Naidu C. V., (2021), Green synthesis of silver nanoparicles using flower extracts of Aerva lanata and their biomedical application. Sci. Tech. 10: 919259.
[33] Tudu S. C., Zubko M., Kusz J., Bhattacharjee A., (2020), Structural, morphological and optical characterization of green synthesized ZnS nanoparticles using Azadirachta indica (Neem) leaf extract. J. Nano Dimens. 11: 99-111.
[34] Abdel-Aziz M. S., Sheheen M. S., El-Nekeety A. A., Abdel-Wahhab M. A., (2013), Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Saudi Chem. Soc. 18: 356-363.
[35] Sriramulu M., Sumathi S., (2017), Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesized using forest edible mushroom. Nat. Sci. Nanosci. Nanotechnol. 8: 045012-045016.
[36] Dakal T. C., Kumar A., Majumdar R. S., Yadav V., (2016), Mechanistic basis of antimicrobial actions of silver nanoparticles. Microbiol. 7: 1831-1837.
[37] Banasink R., Krychowiak M., Swigon D., Thomaaszawicz W., Michalak A., Chylewska A., Ziabka M., Lapinski M., Koscielska B., Narajczyk M., Krolika A., (2020), Carnivorous plants used for green synthesis of silver nanoparticles with broad spectrum antimicrobial activity. J. Chem. 13: 1415-1428.
[38] Govindappa M., Hemashekher B., Arthikala M. K., Rai V. R., Ramachantra Y. L., (2018), Characterization, antibacterial, antioxidant, antidiabetic, antiinflammaory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. in Phy. 9: 400-408.
[39] Kharat S. N., Mendhulkar V. D., (2016), Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Sci. Eng. 62: 719-724.
[40] Das S. K., Behora S., Patra J. K., Thatoi H., (2019), Green synthesis of silver nanoparticles using Avicanmia officinalis and xylocarpus granatum extracts and in vitro evaluation of antioxidant, antidiabetic and antiinflammatory activities. Clu. Sci. 30: 1103-1113.
[41] Moorthy K., Chang K. C., Wa W. J., Hsu J. Y., Yu P. J., Chiang C. K., (2021), Systematic evalution of antioxidant efficiency and antibacterial mechanism of bitter gourd extracts stabilized silver nanoparticles. 11: 2278-2282.
[42] Singh R., Hano C., Nath G., Sharma B., (2021), Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas and their antioxidant and antimicrobial activity against Human pathogenic bacteria. Biomol. 11: 299-305.
[43] Alharbi F. A., Alarfaj F. A., (2020), Green synthesis of silver nanoparticles from Neurada procumbens and its antibacterial activity against multi-drug resistant microbial pathogens. King-Saud. Uni. Sci. 32: 1346-1352.
[44] Devanesan S., Alsalhi M. S., (2021), Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculents for cytotoxicity and antimicrobial studies. J. Nanomed. 16: 3343-3356.
[45] Dakal T. C., Kumar A., Majumdar R. S., Yadav V., (2016), Mechanistic basis of antimicrobial actions of silver nanoparticles. Microbial. 7: 01831-01836.