[1] Maslyuk V. V., Achilles S., Sandratskii L., Brandbyge M., Mertig I., (2013), Thermopower switching by magnetic field: First-principles calculations. Phys. Rev. B: 88: 081403.
[2] Koumoto K., Mori T., (2013), Thermoelectric nonmaterial's design and applications springier series in materials science. Springer, New York.
[3] Iijima S., Ichihashi A., (1993), Single-shell carbon nanotubes of 1-nm diameter. Nature. 363: 603–605.
[4] Dincer I., Rosen M. A., (1998), A worldwide perspective on energy, environment and sustainable development. Int. J. Energy Res. 22: 1305-1321.
[5] Yoshioka S., Hayashi K., Yokoyama A., Saito W., Li H., Takamatsu T., Miyazaki Y., (2020), Crystal structure, electronic structure and thermoelectric properties of β-and γ-Zn 4 Sb3 thermoelectrics: A (3+ 1)-dimensional superspace group approach. J. Mater. Chem. C. 8: 9205–9212.
[6] Sheskin A., Schwarz T. , Yu Y., Zhang S., Abdellaoui L., Gault B., Cojocaru-Miredin O., Scheu C., Raabe D., Wuttig M., Amouyal Y., (2018), Tailoring thermoelectric transport properties of Ag-alloyed PbTe: Effects of microstructure evolution. ACS Appl. Mater. Interf. 10: 38994-39001 .
[7] Khan I., Saeed K., Khan I., (2019), Nanoparticles: Properties, applications and toxicities. Arab. J. Chem.12: 908-931.
[8] He H., Ai Pham-Huy L., Dramou P. , Xiao D., Zuo P., Pham-Huy C., ( 2013), Carbon nanotubes: Applications in pharmacy and medicine. Bio. Med. Res. Int. 12: 578290.
[9] Wakabayashi K., Dutta S., (2012), Nanoscale and edge effect on electronic properties of graphene. Sci. Rep. 2: 519-526.
[10] Zuev Y. M., Chang W., Kim P., (2009), Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102: 096807.
[11] Chang C. P., Lu C. L., Shyu F. L., Chen R. B., Huang Y. C., Lin M. F., (2005), Magnetoelectronic properties of nanographite ribbons. Phys. E Low-Dimens. Syst. Nanostruc. 27: 82–97.
[12] Wang J., Ma F., Sun M., (2017), Graphene, hexagonal boron nitride, and their
heterostructures: properties and applications. RSC Adv. 7: 16801-16806.
[13] Abergel D. S. L., Apalkov V., Berashevich J., Ziegler K., Chakraborty T., (2010), Properties of graphene: A theoretical perspective. Adv. Phys. 59: 461-482.
[14] Kane C. L., Mele E., (2005), Quantum spin hall effect in graphene. J. Phys. Rev. Lett. 95: 146802-146807.
[15] Walczak K., (2007), Thermoelectric properties of vibrating molecule asymmetrically connected to the electrodes. Phys. B. Condens. Matter. 392: 173-179.
[16] Zhou L., Carbotte J. P., (2013), Impact of electron–phonon interaction on dynamic conductivity of gapped dirac fermions: Application to single layer MoS2. Phys. B: Condens. Matter. 421: 97-104.
[17] Sharma V., Kagdada H. L., Jha P. K., Spiewak P., Kurzydłowski K. J., (2020), Thermal transport properties of boron nitride based materials: A review. Renew. Sustain. Energy Rev.120: 109622.
[18] Huang L., Zhang Q., Yuan B., Lai X., Yan X., Ren Z., (2016), Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bullet. 76: 107-112.
[19] Chen L., Zeng X., Tritt T. M., Poon S. J., (2016), Half-heusler alloys for efficient thermoelectric power conversion. J. Electron Mater. 45: 5554–60.
[20] Venkatasubramanian R., Siivola E., Colpitts T., Quinn B., (2001), Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 413: 597–602.
[21] Zevalkink A., Zeier W. G., Pomrehn G., Schechtel E., Tremel W., Snyder G. J., ( 2012), Thermoelectric properties of Sr3 GaSb3–a chain-forming Zintl compound. Energy Env. Sci. 5: 9121-9127.
[22] Kuang W., Hu R., Fan Z. Q., Zhang Z. H., (2019), Spin-dependent carrier mobility and its gate-voltage modifying effects for functionalized single walled black phosphorus tubes. Nanotechnol. 30: 145301.
[23] Jiang X., Ban C., Li L., Wang C., Chen W., Liu X., (2021), Thermoelectric properties study on the BN nanoribbons via BoltzTrap first-principles. AIP Adv. 11: 055120.
[24] Nasrollahzadeh M., Sajjadi M., Atarod M., Sajjadi S. M., Issaabadi Z., (2019), Types of nanostructures. Interf. Sci. Technol. 28: 29-80.
[25] Huang Z., Lu T. Y., Wang H. Q., Yang S. W., Zheng J. C., ( 2017), Thermoelectric properties of two-dimensional hexagonal indium-VA. Comput. Mater. Sci. 130: 232-237.
[26] Kresse G., Furthmuller J., (1996), Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54: 11169-11175.
[27] Heine T., Seifert G., Fowler P. W., Zerbetto F., (1999), A tight-binding treatment for 13C NMR spectra of fullerenes. J. Phys. Chem. A. 103: 8738-8743.
[28] Porezag D., Frauenheim T. H., Köhler T. H., Seifert G., Kaschner R., (1995), Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B. 51: 12947-12953.
[29] Carlo A. D., (2002), Tight-binding methods for transport and optical properties in realistic nanostructures. Phys. B: Condens. Mat. 314: 211-219.
[30] Deb J., Mondal R., Sarkar U., Sadeghi H., (2021), Electronic and transport property of two-dimensional boron phosphide sheet. J. Molec. Graph. Model. 112: 108117-108122.
[31] Ding G., Gao G., Yao K., (2015), High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep. 5: 9567-9572.
[32] Ma H., Yang C.-L., Wang M.-S., Ma X.-G., (2018), AgKTe: An intrinsic semiconductor material with high thermoelectric properties at room temperature. J. Alloys Compd. 739: 35–40.
[33] Niazian M. R., Yaghobi M., (2016), Inelastic electron transport in C70 fullerene. Indian J. Pure & Appl. Phys. 54: 123-129.
[34] Avouris P., JiaChen J., (2006), Nanotube electronics and optoelectronics. Mater. Today. 9: 46-54.
[35] Haque E., Cazorla C., Hossain M. A., (2019), First-principles prediction of large thermoelectric efficiency in superionic Li2 SnX3 (X= S, Se). Phys. Chem. Chem. Phys. 22: 878-883.
[36] Yaghobi M., Ramzanpour M. A., Niazian M. R., (2016), Electronic transport through N24B24 molecular junction. Chin. J. Chem. Phys. 29: 223-228.
[37] Boor J. de., Mülle E., (2013), Data analysis for Seebeck coefficient measurements. Rev. Sci. Inst. 84: 065102-065107.
[38] Snyder G. J., Snyder A. H., (2017), Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 10: 2280–2283.
[39] Herrera-Carbajal A., Rodríguez-Lugo V., Hernández-Ávila J., Sánchez-Castillo A., (2021), A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon–germanium nanotubes Phys. Chem. Chem. Phys. 23: 13075-13086.
[40] Niazian M. R., Matin L. F., Yaghobi M., Masoudi A. A., (2020), Thermoelectric Properties of B12 N12 Molecule. Current Nanosc. 16: 936–944.
[41] Pan C., Long M., He J., (2017), Enhanced thermoelectric properties in boron nitride quantum-dot. Results in Phys. 7: 1487–1491.
[42] Visan C., (2014), Thermoelectric properties of graphene-boron-nitride nanoribbons with transition metal impurities. J. Elect. Mater. 43: 3470–3476.