Nanopsychiatry: Engineering of nanoassisted drug delivery systems to formulate antidepressants

Document Type : Review

Authors

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603 103, INDIA.

Abstract


­Psychiatry involves the study of behavior, mind, personality, emotions, and human thoughts, which helps in the assessment and treatment of various mental health issues. Recently, the complexity of psychiatry has increased among all other medical specialties. Major depression is considered to become the global cause of disability by 2030. Antidepressants are the primary care or treatment given to any patient. Generally, antidepressants work by balancing the neurotransmitters in the brain, which accounts for the change in mood and emotions. The major problem limiting the use and research of antidepressants is blood brain barrier (BBB). They are highly selective for the movement of ions and molecules between blood and the brain. In particular circumstances, BBB hinders the entry of these drugs to the brain, thereby decreasing the efficacy, in turn increasing the side effects. Drug molecules larger than the pore size of BBB cannot pass through them. Nanopsychiatry deals with the application of nanoparticles in designing drugs, treatments, and diagnostic tools for several neurological and psychiatric illnesses. Nanoparticles exhibit a large surface-to-volume ratio which empowers them to remain a primary part of an effective drug delivery system. Nanocarriers made up of biodegradable polymers can overcome the limitations of BBB. Other than polymers, novel surfactant-based nanocarriers are a successful carrier of the drug across the BBB. This review discusses the severity of depression and the need for novel nanoassisted drug delivery systems. 

Keywords


[1] Tatz C., Tatz S., (2019), Depressing Thoughts. In The Sealed Box of Suicide (pp. 19-30). Springer.
[2] Littlewood R., (1996), Psychiatry's culture. Int. J. Soc. Psychiatry. 42: 245-268.
[3] Saraceno B., Dua T., (2009), Global mental health: The role of psychiatry. Eur. Arch. Psychiatry Clin. Neurosci., 259: 109-117.
[4] Johnsen T. J., Friborg O., (2015), The effects of cognitive behavioral therapy as an anti-depressive treatment is falling: A meta-analysis. Psychol. Bull. 141: 747-752.
[5] Blackburn T. P., (2019), Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res.  Perspect. 7: e00472.
[6] Tomasetti C., Montemitro C., Fiengo A. L., Santone C., Orsolini L., Valchera A., Carano A., Pompili M., Serafini G., Perna G., (2019), Novel pathways in the treatment of major depression: Focus on the glutamatergic system. Curr. Pharm. Des. 25: 381-387.
[7] Fedoce A. d. G., Ferreira F., Bota R. G., Bonet-Costa V., Sun P. Y.,  Davies K. J., (2018), The role of oxidative stress in anxiety disorder: cause or consequence? Free Radical Res. 52: 737-750.
[8] Rana T., Behl T., Sehgal A., Srivastava P.,  Bungau S., (2020), Unfolding the role of BDNF as a biomarker for treatment of depression. J. Mol. Neurosci. 6: 1-14.
[9] Jesulola E., Micalos P., Baguley I. J., (2018), Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model-are we there yet? Behav. Brain Res. 341: 79-90.
[10] Jenkins W. J., (2017), An Analysis of Sigmund Freud’s The Interpretation of Dreams. Macat Library.
[11] Yu H., Dai H., (2015), Application of the" Unconscious" of Psychoanalysis in Design. 1st International Conference on Arts, Design, and Contemporary Education (ICADCE 2015).
[12] Gaynes B., (2016), Assessing the risk factors for difficult-to-treat depression and treatment-resistant depression. J. Clinic. Psychiatry. 77: 4-8.
[13] Okuyama T., Akechi T., Mackenzie L.,  Furukawa T. A., (2017), Psychotherapy for depression among advanced, incurable cancer patients: A systematic review and meta-analysis. Cancer Treat. Rev. 56: 16-27.
[14] Agius M., Bonnici H., (2017), Antidepressants in use in clinical practice. Psychiatr Danub. 29(Suppl 3): 667-671.
[15] Naber D., Bullinger M., (2018), Should antidepressants be used in minor depression? Dialogues Clin. Neurosci. 20: 223-228.
[16] Predictable S., Laurencic G., Malone D., (2006), Side effects of antidepressants: An overview. Cleveland Clin. J. Med. 73: 351-357.
[17] Milan R., Vasiliadis H.-M., (2020), The association between side effects and adherence to antidepressants among primary care community-dwelling older adults. Aging & Mental Health. 24: 1229-1236.
[18] Radaic A., Martins-de-Souza D., (2020), The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomed. Nanotechnol. Biol. Med. 28: 102222-102228.
[19] Cookson J., (1993), Side-effects of antidepressants. Brit. J. Psychiatry. 163: 20-24.
[20] Felthous A. R., Stanford M. S., (2020), The pharmacotherapy of impulsive aggression in psychopathic disorders. The Wiley International Handbook on Psychopathic Disorders and the Law: 805-834.
[21] Read J., Williams J., (2018), Adverse effects of antidepressants reported by a large international cohort: A motional blunting, suicidality, and withdrawal effects. Current Drug Safety. 13: 176-186.
[22] Mayers A. G., Baldwin D. S., (2005), Antidepressants and their effect on sleep. Hum. Psychopharmacol. Clin. Exp. 20: 533-559.
[23] Freeman D., Sheaves B., Waite F., Harvey A. G., Harrison P. J., (2020), Sleep disturbance and psychiatric disorders. The Lancet Psychiatry. 7: 628-637.
[24] Sharmiladevi P., Girigoswami K., Haribabu V., Girigoswami A., (2021), Nano-enabled theranostics for cancer. Mater. Adv. 2: 2876-2891.
[25] Ghosh S., Girigoswami K., Girigoswami A., (2019), Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine. 14: 2067-2082.
[26] Bayda S., Adeel M., Tuccinardi T., Cordani M.,  Rizzolio F., (2020), The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 25: 112-118.
[27] Angle M. R., Cui B., Melosh N. A., (2015), Nanotechnology and neurophysiology. Curr. Opin. Neurobiol. 32: 132-140.
[28] Girigoswami A., Ramalakshmi M., Akhtar N., Metkar S. K., Girigoswami K., (2019), ZnO nanoflower petals mediated amyloid degradation-an in vitro electrokinetic potential approach. Mater. Sci. Eng. C. 101: 169-178.
[29] Sharmiladevi P., Akhtar N., Haribabu V., Girigoswami K., Chattopadhyay S.,  Girigoswami A., (2019), Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio. Mater. 2: 1634-1642.
[30] Girigoswami K., Saini D., Girigoswami A., (2021), Extracellular matrix remodeling and development of cancer. Stem Cell Rev. Rep. 17: 739-747.
[31] Farokhzad O. C., Langer R., (2009), Impact of nanotechnology on drug delivery. ACS Nano. 3: 16-20.
[32] Wang B., Kostarelos K., Nelson B. J.,  Zhang L., (2021), Trends in Micro/Nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33: 2002047.
[33] Andrews R. J., (2012), Nanotechnology in neuromodulation. Int. Rev. Neurobiol. 107: 161-184.
[34] Donner A., (2010), Nanotechnology in molecular medicine. Trends Mol. Med. 16: 551-552.
[35] Heidarzadeh M., Gürsoy-Özdemir Y., Kaya M., Abriz A. E., Zarebkohan A., Rahbarghazi R.,  Sokullu E., (2021), Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell & Biosc. 11: 1-28.
[36] Koliatsos V. E., (2020), Neuropsychiatry, An Issue of Psychiatric Clinics of North America, E-Book (Vol. 43). Elsevier Health Sciences.
[37] Naqvi S., Panghal A., Flora S., (2020), Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front. Neurosci. 14: 494-498.
[38] Zhang M., Bishop B. P., Thompson N. L., Hildahl K., Dang B., Mironchuk O., Chen N., Aoki R., Holmberg V. C.,  Nance E., (2019), Quantum dot cellular uptake and toxicity in the developing brain: Implications for use as imaging probes. Nanoscale Adv. 1: 3424-3442.
[39] Shankaran D. R., Miura N., (2007), Recent progress and challenges in nanotechnology for biomedical applications: An insight into the analysis of neurotransmitters. Recent Patents on Nanotechnol. 1: 210-223.
[40] Sobarzo-Sánchez E., Mohammad Nabavi S., Uriarte E.,  Santana L., (2015), Nanoparticles in the treatment of mental disorders: A new tool in the psychiatric medication. Curr. Top. Med. Chem. 15: 282-286.
[41] Guo X., Wei X., Chen Z., Zhang X., Yang G.,  Zhou S., (2020), Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci. 107: 100599.
[42] Zhu Y., Liu C.,  Pang Z., (2019), Dendrimer-based drug delivery systems for brain targeting. Biomolec.  9: 790-796.
[43] Fond G., Macgregor A., Miot S., (2013), Nanopsychiatry—the potential role of nanotechnologies in the future of psychiatry: A systematic review. Eur. Neuropsychopharmacol. 23: 1067-1071.
[44] Vimaladevi M., Divya K. C.,  Girigoswami A., (2016), Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J. Photochem. Photobiol. B: Biol. 162: 146-152.
[45] Girigoswami A., Das S., De S., (2006), Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochim. Acta Part A: Molec. Biomolec. Spect. 64: 859-866.
[46] Deepika R., Girigoswami K., Murugesan R., Girigoswami A., (2018), Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr. Drug Del. 15: 652-657.
[47] Trimble M., (2016), Neuropsychiatry. CNS Spectrums. 21: 221-222.
[48] Mihajlović G., Dujkić-Dejanović S., Jovanović-Mihajlović N., Janković S., Janjić V., Jovanović M., Petrović D., Borovčanin M., Radmanović B., (2010), Comparison of safety between individualized and empiric dose regimen of amitriptyline in the treatment of major depressive episode. Psychiatria Danubina. 22: 354-357.
[49] Singh D. B., (2020), The impact of pharmacogenomics in personalized medicine. Adv. BioChem. Eng. BioTechnol. 171: 369-394.
[50] Fond G., Miot S., (2013), La nanopsychiatrie. Le rôle potentiel des nanotechnologies dans l’avenir de la psychiatrie. Une revue systématique. L'Encéphale. 39: 252-257.
[51] Kobeissy F. H., Gulbakan B., Alawieh A., Karam P., Zhang Z., Guingab-Cagmat J. D., Mondello S., Tan W., Anagli J.,  Wang K., (2014), Post-genomics nanotechnology is gaining momentum: Nanoproteomics and applications in life sciences. OMICS. 18: 111-131.
[52] Milanesi E., Maj C., Bocchio-Chiavetto L., Maffioletti E., (2016), Nanomedicine in psychiatry: new therapeutic opportunities from research on small RNAs. Drug Dev. Res. 77: 453-457.
[53] Caruso G., Raudino G., Caffo M., Alafaci C., Granata F., Lucerna S., M Salpietro F.,  Tomasello F., (2010), Nanotechnology platforms in diagnosis and treatment of primary brain tumors. Recent Patents Nanotechnol.  4: 119-124.
[54] Kakkar V., Modgill N., Kumar M., (2016), Novel drug delivery systems for herbal antidepressants. In Herbal Medicine in Depression (pp. 529-556). Springer BooK.
[55] Kalmar S., (2014), The importance of neuropsychopharmacology in the development of psychiatry. Neuropsychopharmacol. Hung. 16: 149-156.
[56]  Silva J. A. C., Steffen R. E., (2017), The future of psychiatry: Brain devices. Metabolism. 69: S8-S12.
[57] Zhou Y., Peng Z., Seven E. S.,  Leblanc R. M., (2018), Crossing the blood-brain barrier with nanoparticles. J. Control. Rel. 270: 290-303.
[58] Li X., Tsibouklis J., Weng T., Zhang B., Yin G., Feng G., Cui Y., Savina I. N., Mikhalovska L. I.,  Sandeman S. R., (2017), Nano carriers for drug transport across the blood–brain barrier. J. Drug Target. 25: 17-28.
[59] Fan X., Yang J., Loh X. J., Li Z., (2019), Polymeric janus nanoparticles: Recent advances in synthetic strategies, materials properties, and applications. Macromol. Rapid Commun. 40: 1800203.
[60] Budhian A., Siegel S. J., Winey K. I., (2007), Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. Int. J. Pharm. 336: 367-375.
[61] Puri R., A Berhe S., O Akala E., (2017), pH-sensitive polymeric nanoparticles fabricated by dispersion polymerization for the delivery of bioactive agents. Pharmac. Nanotechnol. 5: 44-66.
[62] Muthu M. S., Agrawal P., Singh R. P., (2014), Antipsychotic nanomedicine: A successful platform for clinical use. Nanomedicine. 9: 2071-2074.
[63] Muthu M. S., Rawat M. K., Mishra A., Singh S., (2009), PLGA nanoparticle formulations of risperidone: Preparation and neuropharmacological evaluation. Nanomed. Nanotechnol. Biol. Med. 5: 323-333.
[64] López-Maldonado E. A., Oropeza-Guzmán M. T., (2021), Synthesis and physicochemical mechanistic evaluation of chitosan-based interbiopolyelectrolyte complexes for effective encapsulation of OLZ for potential application in nano-psychiatry. Sustainable Chem. Pharmac. 22: 100456.
[65] Shankar R., Joshi M., Pathak K., (2018), Lipid nanoparticles: A novel approach for brain targeting. Pharmac. Nanotechnol. 6: 81-93.
[66] Mu H., Holm R., (2018), Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin. Drug Deliv. 15: 771-785.
[67] Puri A., Loomis K., Smith B., Lee J.-H., Yavlovich A., Heldman E., Blumenthal R., (2009), Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev.™  Therap. Drug Carrier Sys. 26: 1215-1219.
[68] Kaur P., Garg T., Rath G., Murthy R., Goyal A. K., (2016), Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv. 23: 717-728.
[69] Prabaharan M., (2015), Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol. 72: 1313-1322.
[70] Manjunath K., Venkateswarlu V., (2005), Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Controll. Rel. 107: 215-228.
[71] Rana I., Khan N., Ansari M. M., Shah F. A., ud Din F., Sarwar S., Imran M., Qureshi O. S., Choi H.-I.,  Lee C.-H., (2020), Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model. Colloids Surf. B. Biointerf. 194: 111209.
[72] Budhian A., Siegel S. J.,  Winey K. I., (2008), Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int. J. Pharm. 346: 151-159.
[73] Su Z.-X., Shi Y.-N., Teng L.-S., Li X., Wang L.-x., Meng, Q.-F., Teng, L.-R.,  Li, Y.-X., (2011), Biodegradable poly (D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation. Pharm. Dev. Technol. 16: 377-384.
[74] Nippani A., Vijendar C., Dindigala A., Kandhula A., Chandra S.,  Alabadri A., (2016), Preparation and in-vitro evaluation of mirtazapine oral films. Res. Rev. Pharm. Pharm. Sci. 5: 96-103.
[75] Darius J., Meyer F. P., Sabel B. A., Schroeder U., (2000), Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J. Pharm. Pharmacol. 52: 1043-1047.
[76] Haque S., Md S., Fazil M., Kumar M., Sahni J. K., Ali J.,  Baboota S., (2012), Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr. Polym. 89: 72-79.
[77] Rajera R., Nagpal K., Singh S. K., Mishra D. N., (2011), Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 34: 945-953.