[1] Ahmad M. S., Pandey A. K., Abd Rahim N., (2017), Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sust. Energ. Rev. 77: 89-108.
[2] So S., Hwang I., Schmuki P., (2015), Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy Environ. Sci. 8: 849-854.
[3] John K. A., Naduvath J., Remillard S. K., Shaji S., DeYoung P. A., Kellner Z. T., Philip R. R., (2019), A simple method to fabricate metal doped TiO2 nanotubes. Chem. Phys. 523: 198-204.
[4] Xie K., Guo M., Liu X., Huang H., (2015), Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal. J. Power Sources. 293: 170-177.
[5] Wang H., Liu Q., Liu D., Su R., Liu J., Li Y., (2018), Computational prediction of electronic and photovoltaic properties of anthracene-based organic dyes for dye-sensitized solar cells. Int. J. Photoenergy. 2018: Article ID: 4764830.
[6] Halme J., Vahermaa P., Miettunen K., Lund P., (2010), Device physics of dye solar cells. Adv. Mat. 22: E210-E234.
[7] Tsvetkov N., Larina L., Ku Kang J., Shevaleevskiy O., (2020), Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance. Nanomater. 10: 296-302.
[8] O'regan B., Grätzel M., (1991), A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353: 737-740.
[9] Yahya M., Bouziani A., Ocak C., Seferoğlu Z., Sillanpää M., (2021), Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes Pigm. 192: 109227.
[10] Yu J., Fan J., Lv K., (2010), Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale. 2: 2144-2149.
[11] Hafez H., Lan Z., Li Q., Wu J., (2010), High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode. Nanotechnol. Sci. Appl. 3: 45-49.
[12] Nazeeruddin M. K., Kay A., Rodicio I., Humphry-Baker R., Müller E., Liska P., Grätzel M., (1993), Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) Ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115: 6382-6390.
[13] Mora-Sero I., Giménez S., Fabregat-Santiago F., Gómez R., Shen Q., Toyoda T., Bisquert J., (2009), Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42: 1848-1857.
[14] Grätzel M., (2005), Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44: 6841-6851.
[15] Yildiz Z. K., Atilgan A., Atli A., Özel K., Altinkaya C., Yildiz A., (2019), Enhancement of efficiency of natural and organic dye sensitized solar cells using thin film TiO2 photoanodes fabricated by spin-coating. J. Photochem. Photobiol. A. 368: 23-29.
[16] Gnida P., Jarka P., Chulkin P., Drygała A., Libera M., Tański T., Schab-Balcerzak E., (2021), Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Mater. 14: 1633-1637.
[17] Kathirvel S., Chen H. S., Su C., Wang H. H., Li C. Y., Li W. R., (2013), Preparation of smooth surface TiO2 photoanode for high energy conversion efficiency in dye-sensitized solar cells. J. Nanomater. 2013: Article ID 367510.
[18] Tsai J. K., Hsu W. D., Wu T. C., Meen T. H., Chong W. J., (2013), Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 8: 1-6.
[19] Tong Z., Peng T., Sun W., Liu W., Guo S., Zhao X. Z., (2014), Introducing an intermediate band into dye-sensitized solar cells by W6+ doping into TiO2 nanocrystalline photoanodes. The J. Phys. C. 118: 16892-16895.
[20] Kakiage K., Aoyama Y., Yano T., Otsuka T., Kyomen T., Unno M., Hanaya M., (2014), An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chem. Comm. 50: 6379-6381.
[21] Graetzel M., Janssen R. A., Mitzi D. B., Sargent E. H., (2012), Materials interface engineering for solution-processed photovoltaics. Nature. 488: 304-312.
[22] Mariotti N., Bonomo M., Fagiolari L., Barbero N., Gerbaldi C., Bella F., Barolo C., (2020), Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 22: 7168-7218.
[23] Yeoh M. E., Chan K. Y., (2017), Recent advances in photo‐anode for dye‐sensitized solar cells: A review. Int. J. Energy Res. 41: 2446-2467.
[24] Scarabino S., Nonomura K., Vlachopoulos N., Hagfeldt A., Wittstock G., (2020), Effect of TiO2 photoanodes morphology and dye structure on dye-regeneration kinetics investigated by scanning electrochemical microscopy. Electrochem. 1: 329-343.
[25] Leung D. Y., Fu X., Wang C., Ni M., Leung M. K., Wang X., Fu X., (2010), Hydrogen production over titania‐based photocatalysts. Chem. Sus. Chem. 3: 681-694.
[26] Liu G., Gong J., Kong L., Schaller R. D., Hu Q., Liu Z., Xu T., (2018), Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. 115: 8076-8081.
[27] Hutter E. M., Sutton R. J., Chandrashekar S., Abdi-Jalebi M., Stranks S. D., Snaith H. J., Savenije T. J., (2017), Vapour-deposited cesium lead iodide perovskites: Microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2: 1901-1908.
[28] Wang X., Li Z., Shi J., Yu Y., (2014), One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 114: 9346-9384.
[29] Ooyama Y., Harima Y., (2012), Photophysical and electrochemical properties, and molecular structures of organic dyes for dye‐sensitized solar cells. Chem. Phys. Chem. 13: 4032-4080.
[30] Alfanaar R., Elim P. E., Yuniati Y., Kusuma H. S., Mahfud M., (2021), Synthesis of TiO2/ZnO-anthocyanin hybrid material for dye sensitized solar cell (DSSC). In IOP Conf. Series: Mater. Sci. and Eng. 1053: 012088.
[31] Cejka J., Van Bekkum H., Corma A., Schueth F., (2007), Introduction to zeolite molecular sieves. Elsevier.
[32] Corma A., Zones S., Cejka J., (Eds.), (2010), Zeolites and catalysis: synthesis, reactions and applications. John Wiley & Sons.
[33] Kulprathipanja S., (Ed.) (2010), Zeolites in industrial separation and catalysis. John Wiley & Sons.
[34] Naikoo R. A., Bhat S. U., Mir M. A., Tomar R., Khanday W. A., Dipak P., Tiwari D. C., (2016), Polypyrrole and its composites with various cation exchanged forms of zeolite X and their role in sensitive detection of carbon monoxide. RSC Adv. 6: 99202-99210.
[35] Li W., Liang R., Hu A., Huang Z., Zhou Y. N., (2014), Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4: 36959-36966.
[36] Sun Y., Lei J., Wang Y., Tang Q., Kang C., (2020), Fabrication of a magnetic ternary ZnFe2O4/TiO2/RGO Z-scheme system with efficient photocatalytic activity and easy recyclability. RSC Adv. 10: 17293-17301.
[37] Back S., Kim J. H., Kim Y. T., Jung Y., (2016), Bifunctional interface of Au and Cu for improved CO2 electroreduction. ACS Appl. Mater. Interf. 8: 23022-23027.
[38] Rahman A., Nurjayadi M., Wartilah R., Kusrini E., Prasetyanto E. A., Degermenci V., (2018), Enhanced activity of TiO2/Natural zeolite composite for degradation of methyl orange under visible light irradiation. Int. J. Technol. 9: 1159-1167.