Synthesis and characterization of bioglass / maltodextrin nanocomposites in the presence of PVP as a potential candidate for flutamide drug delivery

Document Type : Reasearch Paper

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Chemistry, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.

Abstract

Bioactive glass is an appropriate substance for the transporting a pharmaceutical compound owing to its special effects (containing great antibacterial, semiconducting, nanoporous, adherent, and strong bonding with the bone tissue). Hence, in recent years, many investigations have been done in this topic. However, several constraints alike fast drug release and slow drug loading ability are observed in preceding researches. The researchers proposed that restrictions can be resolved by improving the fabricating method of bioglass and the reinforcement of diverse nanocomposites for postponing drug release. Therefore, new bioglass/maltdextrin nanocomposites were created via the sol-gel procedure in the absence and presence of Polyvinylpyrrolidone (PVP) as an organic modifier. bioglass/maltdextrin nanoparticles and bioglass/maltdextrin/PVP nanocomposites were characterized by (XRD) technique, (EDX), (FE-SEM) and (FT-IR). Moreover, the loading of flutamide and release behavior at pH = 7.4 and T = 37 °C of the provided specimens were determined by UV-Vis Spectroscopy. The effects of flutamide Loading on the bioglass/maltdextrin/PVP nanocomposites at different times (6, 8, 24 and 72 hrs.) were investigated. Also, the structural properties of bioglass / maltodextrin / PVP nanocomposites on loading and release of flutamide were evaluated. The capability of nanocomposites for flutamide delivery was surveyed as a drug delivery pattern under in vitro condition. Percentage of Drug loading efficiency on nanocarriers 99.89% was acquired, and eventually the release rate was reduced slowly up to nearly 12 days. Accordingly, the outcomes ascertained that the bioglass/maltdextrin/PVP nanocomposites with the high loading performance and stable release ability can be appropriate candidates for sustained flutamide release.

Keywords


[1] Durgalakshmi D., Subhathirai S. P., Balakumar S., (2014), Nano-bioglass: A versatile antidote for bone tissue engineering problems. Procedia Eng. 92: 2-8.
[2] Widiyanti S., (2020), Synthesis of nano bioactive glass or bioglass. Green Appl. Chem. 10:  01-32.
[3] Chai C., Leong K. W., )2007(, Biomaterials approach to expand and direct differentiation of stem cells. Molec. Therap. 15: 467-480
[4] Dinarvand P., Seyedjafari E., Shafiee A., Babaei Jandaghi A., Doostmohammadi A., Fathi M. H., Soleimani M., (2011), New approach to bone tissue engineering: Simultaneous application of hydroxyapatite and bioactive glass coated on a poly (L-lactic acid) scaffold. ACS Appl. Mater. Interf. 3: 4518-4524.
[5] Miao X., Tan D. M., Li J., Xiao Y., Crawford R., (2008), Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid).  Acta Biomater.  4: 638-645.
[6] Kuzmenka D., Sewohl C., König A., Flath T., Hahnel S., Schulze F. P., Schulz-Siegmund M., (2020), Sustained calcium (II)-release to impart bioactivity in hybrid glass scaffolds for bone tissue engineering. Pharmaceutics.  12: 1192-1197.
 [7] Huang L. D., Gong W. Y., Dong Y. M., (2021), Effects of bioactive glass on proliferation, differentiation and angiogenesis of human umbilical vein endothelial cells. J. Peking Univ. Health Sci. 53: 371-377.
[8] Sedighi O., Alaghmandfard A., Montazerian M., Baino F., (2022), A critical review of bioceramics for magnetic hyperthermia. J. Am. Ceram. Soc. 105: 1723-1747.
[9] Gerasymchuk Y., Wedzynska A., Lukowiak A., (2022), Novel CaO–SiO2–P2O5 nanobioglass activated with hafnium phthalocyanine. Nanomater. 12: 1719-1725.
[10] Pajares Chamorro N., Wagley Y., Hammer N., Hankenson K., Chatzistavrou X., (2022), Bioactive glass particles as multi functional therapeutic carriers against antibiotic resistant bacteria. J. Am. Ceram. Soc. 105: 1778-1789.
[11] Correia B. L., Gomes A. T., Noites R., Ferreira J. M., Duarte A. S., (2022), New and efficient bioactive glass compositions for controlling endodontic pathogens. Nanomater. 12: 1577-1582.
[12] Vale A. C., Pereira P. R., Barbosa A. M., Torrado E., Alves N. M., (2019), Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. Mater. Sci. Eng: C. 94: 161-168.
[13] Chen Q., Roether J. A., Boccaccini A. R., (2008), Tissue engineering scaffolds from bioactive glass and composite materials. Topics In Tissue Eng.  4: 1-27.
[14] Boccaccini A. R., Erol M., Stark W. J., Mohn D., Hong Z., Mano J. F., (2010), Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 70: 1764-1776.
[15] Sepulveda P., Jones J. R., Hench L. L., (2001), Characterization of melt‐derived 45S5 and sol‐gel–derived 58S bioactive glasses. J. Biomed. Mater. Res: An Official J. Soc. Biomater. 58: 734-740.
[16] Brunner T. J., Grass R. N., Stark W. J., (2006), Glass and bioglass nanopowders by flame synthesis. Chem. Communic. 13: 1384-1386.
[17] Sarkar S. K., Lee, B. T., (2011), Synthesis of bioactive glass by microwave energy irradiation and its in-vitro biocompatibility. Bioceram. Develop. Applicat. 1: 3-8.
[18] Leite Á. J., Mano J. F., (2017), Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J. Mater. Chem. B. 5: 4555-4568.
[19] Sharma A., Jain C. P., (2010), Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res. Pharmac. Sci. 5: 49-56.
[20] Saroj A. L., Singh R. K., Chandra S., (2013), Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: Effect of complexation on thermal stability, conductivity and relaxation behaviour. Mater. Sci. Eng: B. 178: 231-238.
[21] Bui X. V., Ngo T. M. T., (2020), Synthesis and characterization of a highly ordered mesoporous bio-glass. VNU J. Sci: Nat. Sci. Technol. 36: 57-63.
[22] Ramteke S. P., Muley G. G., Baig M. I., Ibrahim A., Manthrammel M. A., Muzammil K., Anis M., (2022), Optimizing growth, linear and 3rd order nonlinear optical traits of potassium aluminium sulfate (KAS) crystal by tuning pH for photonic device applications. Inorg. Chem. Communic. 140: 109484-109488.
[23] Anis M., Muley G. G., Baig M. I., Khan W. A., Ramteke S. P., Massoud E. E. S., (2022), Optimizing first-, second-and third-order optical traits of zinc tris-thiourea sulphate (ZTS) crystal by l-tyrosine for photonic device applications. Ind. J. Phys. 33: 1-4.
[24] Baig M. I., Hussaini S. S., Ali H. E., Anis M., (2022), Analyzing L-valine effect on structural, mechanical, optical and electrical traits of bis-thiourea cadmium chloride (BTCC) crystal. J. Mater. Sci: Mater. Electron. 33: 8218-8225.
[25] Aslibeiki B., Kameli P., Salamati H., Eshraghi M., Tahmasebi T., (2013), Superspin glass state in MnFe2O4 nanoparticles. J. Magnet. Magnet. Mater. 322: 2929-2934.
[26] Meskinfam M., Sadjadi M. S., Jazdarreh H., (2011), Biomimetic preparation of nano hydroxyapatite in gelatin-starch matrix. Eng. Technol. 52: 395-398.
[27] Sahba R., Seyed Sadjadi M., Sajjadi A. A., Farhadyar N., Sadeghi B., (2018), Preparation and characterization of friendly colloidal Hydroxyapatite based on natural Milk’s casein. Int. J. Nano Dimens. 9: 238-245.
[28] Rahma A., Munir M. M., Prasetyo A., Suendo V., Rachmawati H., (2016), Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl (pyrrolidone) fiber. Biolog. Pharmac. Bullet. 39: 163-173.
[29] Senthilkumar S. R., Sivakumar T., (2014), Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci. 6: 461-465.