[1] Wang L., Ma W., Xu L., Chen W., Zhu Y., Xu C., Kotov N. A., (2010), Nanoparticle-based environmental sensors. Mater. Sci. Eng. 70: 265 – 274.
[2] Namasivayam C., Sageetha D., (2005), Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, and agricultural solid waste. Indian J. Chem. Technol. 12: 513- 521.
[3] Braverman L.E., He X., Pino S., Cross M., Magnani B., Lamm S.H., Kruse M. B., Engel A., Crump K. S., Gibbs J. P., (2005), The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J. Clin. Endocrinol. Met. 90: 700-706.
[4] Niedzielski P., Kurzyca I., Siepak J., (2006), A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta. 577: 220-224.
[5] Pourreza N., Hoveizavi R., (2005), Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Anal. Chim. Acta. 549: 124–128.
[6] Chaiyo S., Chailapakul O., Sakai T., Teshima N., Siangproh W., (2013), Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1, 10-phenanthroline. Talanta. 108: 1- 6.
[7] Auffan M., Rose J., Bottero J. Y., Lowry G. V., Jolivet J. P., Wiesner M. R., (2009), Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. National Nanotechnol. 4: 634 – 641.
[8] Wang Z., Ma L., (2009), Gold nanoparticle probes. Coord. Chem. Rev. 253: 1607 – 1618.
[9] Ma X. F., Mang W., Li G., Chen H. Z., Bai R., (2006), Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater. Chem. Phys. 98: 241-247.
[10] Masoumi V., Mohammadi A., Amini M., Khoshayand M. R., Dinarvand R., (2014), Electrochemical synthesis and characterization of solid-phase microextraction fibers using conductive polymers: application in extraction of benzaldehyde from aqueous solution. J. Solid State Electrochem. 18: 1763-1771.
[11] Sharma S., Nirkhe C., Pethkar S., Athawale A. A., (2002), Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B. Chem. 85: 131-136.
[12] Draman S. F. S., Daik R., Musa A., (2009), Synthesis and studies on fluorescence spectroscopy of CSA-doped polyaniline solution in DMF when exposed to oxygen gas. Malays. Polym. J. 4: 7-18.
[13] Pramila M., Meenakshisundaram M., (2017), Biosynthesis of iron (Fe) nanoparticles and its inhibitory effect on Pseudomonas Aeruginosa biofilm. Indian J. App. Res. 7: 251- 524.
[14] Das R. K., Pachapur V. L., Lonappa L., Naghdi M., Pulicharla R., Maiti S., (2017), Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 18: 1-21.
[15] Nakkala J. R., Mata R., Gupta A. K., Sadras S. R., (2014), Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem. 8: 784-794.
[16] Nabikhan A., Kandasamy K., Raj A., Alikunhi N. M., (2010), Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant Sesuvium portulacastrum L, Colloid. Surface. B. 79: 488-493.
[17] Ulug B., Turkdemir M. H., Cicek A., Mete A., (2015), Role of irradiation in the green synthesis of silver nanoparticles. Spectrochim. Acta A. 135: 153-161.
[18] Gurunathan S., Han J., Park J. H., Kim J. H., (2014), A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 9: 248-253.
[19] Gurunathan S., Jeong J. K., Han J. W., Zhang, X. F., Park J. H., Kim J. H., (2015), Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 10: 1–17.
[20] Gurunathan S., (2015), Biologically synthesized silver nanoparticles enhance antibiotic activity against Gram-negative bacteria. J. Ind. Eng. Chem. 29: 217–226.
[21] Maiti S., Barman G., Konar L. J., (2014), Biosynthesized Gold nanoparticles as catalyst. Int. J. Sci. Eng. Res. 5: 1229–1230.
[22] Misra T. K., Liu C. Y., (2009), Surface-functionalization of spherical silver nanoparticleswith macrocyclic polyammonium cations and their potential for sensing phos-phates. J. Nanoparticle Res. 11: 1053–1063.
[23] Wang Q., Yu C., (2009), Chemical and biological sensing and imaging using plasmonic nanoparticles and nanostructures. Biomed. Nanosens. 2012: 59–96.
[24] Qu L. H., Peng Z. A., Peng X. G., (2001), Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1: 333–337.
[25] Koh I., Hong R., Weissleder R., Josephson L., (2008), Sensitive NMR sensors detect antibodies to influenza. Angew. Chem. Int. Ed. Engl. 47: 4119–4121.
[26] Zhang J., Lei J., Xu C., Ding L., Ju H., (2010), Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82: 1117–1122.
[27] Maiti S., Barman G., Konar Laha J., (2016), Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl. Nano. Sci. 6: 529–538.
[28] Bisetty K., Sabela M. I., Khulu S., Xhakaza M., Ramsarup L., (2011), Multivariate optimization of voltammetric parameters for the determination of total polyphenolic content in wine samples using an immobilized biosensor. Int. J. Electro. Chem. Sci. 6: 3631-3643.
[29] Alim N. S., Lintang H. O., Yuliati L., (2015), Fabricated metal-free carbon nitride characterizations for fluorescence chemical sensor of nitrate ions. J. Eng. Sci. Technol. 76: 1-6.
[30] Silva R. F., Zaniquelli M. E. D., (2002), Morphology of nanometric size particulate aluminium-doped zinc oxide films. Colloids Surf. A. 551: 198-203.
[31] Song J. Y., Jang H. K., Kim B. S., (2009), Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Bio. Chem. 44: 1133–1138.
[32] Niu Z., Yang Z., Hu Z., Lu Y., Han C. C., (2003), Polyaniline-Silica composite conductive capsules and hollow spheres. Adv. Funct. Mater. 13: 949-954.
[33] Ayad M. M., Salahuddin N. A., Minisy I. M., Amer W. A., (2014), Chitosan/ polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sens. Actuators B. 202: 144-153.
[34] Sonker R. K., Yadav B. C., (2017), Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection. J. Taiwan Inst. Chem. Eng. 77: 276-281.
[35] Gu L., Wang J., Qi R., Wang X., Xu P., Han X., (2012), A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J. Mol. Catal. A. Chem. 357: 19-25.
[36] Melaku W., Yadav, O. P., Kebede T., (2014), Photo-catalytic removal of methyl orange dye by polyaniline modified ZnO using visible radiation. Sci. Technol. Art. Res. J. 3: 93-102.
[37] Singh S., Rama N., Rao M. S. R., (2006), Influence of d–d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 88: 222111-222113.
[38] Wang C. C., Luconi M. O., Masi A. N., Fernández L. P., (2009), Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon. Talanta. 77: 1238-1243.
[39] Tang H., Sundari R., Lintang H. O., Yuliati L., (2016), Detection of nitrite and nitrate ions in water by graphene oxide as a potential fluorescence sensor. IOP Conf. Ser.: Mater. Sci. Eng. 107: 012027-012033.