Pani modified Ag NPs fluorescence sensor for detection of nitrate ion

Document Type : Reasearch Paper

Author

Department of Chemistry, College of Natural and Computational Sciences, Mekdela Amba University; P. O. Box 32, Tuluawliya, Ethiopia.

Abstract

 Nitrate is one of the major environmental problems in today’s world, which affect human health and welfare, and hinders the sustainable development of both society and the economy. Therefore, the growth of sensor based on decorated noble metal nanoparticles (NPs) such as Ag have been attracted great attention for their convenience of simple operation, excellent absorption and scattering (extinction) properties in recent years. A new and simple fluorometric sensing probe based on polyaniline functionalized AgNPs for NO3- ion detection was developed by polymerization method. It has been successfully synthesized by in- situ polymerization method. The structural, morphological and optical properties of the as-synthesized nanocomposites were characterized by using, fourier- transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy. In the absence of nitrate ion, the PANI/Ag exhibit high fluorescence intensity. Yet, the strong coordination of the basic sites with nitrate ion causes fluorescence intensities quenching through static quenching leading to the qualitative and quantitative detection of nitrate ion.  Factor affecting the detection system such as pH and concentration are optimized.  Also, the developed PANI modified Ag sensor exhibits high selectivity and sensitive toward nitrate ion with detection limit of 8.9×10-4 M. The practical use of the sensor as well tested by spiked with different concentration of nitrate ion solutions on cabbage samples. The result signposted a good linear relation between FO/F and the spiked concentrations of nitrate ion with coefficient of regression R2 = 0.991 (n= 3) and also confirms that the found values is agreed well with the spiked amount. 

Keywords


[1] Wang L., Ma W., Xu L., Chen W., Zhu Y., Xu C., Kotov N. A., (2010), Nanoparticle-based environmental sensors. Mater. Sci. Eng. 70: 265 – 274.
[2] Namasivayam C., Sageetha D., (2005), Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, and agricultural solid waste. Indian J. Chem. Technol. 12: 513- 521.
[3] Braverman L.E., He X., Pino S., Cross M., Magnani B., Lamm S.H., Kruse M. B., Engel A., Crump K. S., Gibbs J. P., (2005), The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J. Clin. Endocrinol. Met. 90: 700-706.
[4] Niedzielski P., Kurzyca I., Siepak J., (2006), A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate   by ion chromatography with post-column ammonium derivatization by Nessler reagent        and diode-array detection in rain water samples. Anal. Chim. Acta. 577: 220-224.
 [5] Pourreza N., Hoveizavi R., (2005), Simultaneous preconcentration of Cu, Fe and Pb   as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Anal. Chim. Acta. 549: 124–128.
[6] Chaiyo S., Chailapakul O., Sakai T., Teshima N., Siangproh W., (2013), Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1, 10-phenanthroline. Talanta. 108: 1- 6.
[7] Auffan M., Rose J., Bottero J. Y., Lowry G. V., Jolivet J. P., Wiesner M. R., (2009), Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. National Nanotechnol. 4: 634 – 641.
[8] Wang Z., Ma L., (2009), Gold nanoparticle probes. Coord. Chem. Rev. 253: 1607 – 1618.
[9] Ma X. F., Mang W., Li G., Chen H. Z., Bai R., (2006), Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater. Chem. Phys. 98: 241-247.
[10] Masoumi V.,  Mohammadi A., Amini M., Khoshayand M. R., Dinarvand R., (2014), Electrochemical synthesis and characterization of solid-phase microextraction fibers    using conductive polymers: application in extraction of benzaldehyde from     aqueous solution. J. Solid State Electrochem. 18: 1763-1771.
[11] Sharma S., Nirkhe C., Pethkar S., Athawale A. A., (2002), Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B. Chem. 85: 131-136.
[12] Draman S. F. S., Daik R., Musa A., (2009), Synthesis and studies on fluorescence spectroscopy of CSA-doped polyaniline solution in DMF when exposed to oxygen gas. Malays. Polym. J. 4: 7-18.
[13] Pramila M., Meenakshisundaram M., (2017), Biosynthesis of iron (Fe) nanoparticles and its inhibitory effect on Pseudomonas Aeruginosa biofilm. Indian J. App. Res. 7: 251- 524.
[14] Das R. K., Pachapur V. L., Lonappa L., Naghdi M., Pulicharla R., Maiti S., (2017), Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 18: 1-21.
[15] Nakkala J. R., Mata R., Gupta A. K., Sadras S. R., (2014), Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem. 8: 784-794.
[16] Nabikhan A., Kandasamy K., Raj A., Alikunhi N. M., (2010), Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant Sesuvium portulacastrum L, Colloid. Surface. B. 79: 488-493.
[17] Ulug B., Turkdemir M. H., Cicek A., Mete A., (2015), Role of irradiation in the green synthesis of silver nanoparticles. Spectrochim. Acta A. 135: 153-161.
[18] Gurunathan S., Han J., Park J. H., Kim J. H., (2014), A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett.  9: 248-253.
[19] Gurunathan S., Jeong J. K., Han J. W., Zhang, X. F., Park J. H., Kim J. H., (2015), Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett.  10: 1–17.
[20] Gurunathan S., (2015), Biologically synthesized silver nanoparticles enhance antibiotic activity against Gram-negative bacteria. J. Ind. Eng. Chem. 29: 217–226.
[21] Maiti S., Barman G., Konar L. J., (2014), Biosynthesized Gold nanoparticles as catalyst. Int. J. Sci. Eng. Res. 5: 1229–1230.
[22] Misra T. K., Liu C. Y., (2009), Surface-functionalization of spherical silver nanoparticleswith macrocyclic polyammonium cations and their potential for sensing phos-phates. J. Nanoparticle Res. 11: 1053–1063.
[23] Wang Q., Yu C., (2009), Chemical and biological sensing and imaging using plasmonic nanoparticles and nanostructures. Biomed. Nanosens. 2012: 59–96.
[24] Qu L. H., Peng Z. A., Peng X. G., (2001), Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1: 333–337.
[25] Koh I., Hong R., Weissleder R., Josephson L., (2008), Sensitive NMR sensors detect antibodies to influenza. Angew. Chem. Int. Ed. Engl.  47: 4119–4121.
[26] Zhang J., Lei J., Xu C., Ding L., Ju H., (2010), Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82: 1117–1122.
[27] Maiti S., Barman G., Konar Laha J., (2016), Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl. Nano. Sci. 6: 529–538.
[28] Bisetty K., Sabela M. I., Khulu S., Xhakaza M., Ramsarup L., (2011), Multivariate optimization of voltammetric parameters for the determination of total polyphenolic  content in wine samples using an immobilized biosensor. Int. J. Electro. Chem. Sci. 6: 3631-3643.
[29] Alim N. S., Lintang H. O., Yuliati L., (2015), Fabricated metal-free carbon nitride characterizations for fluorescence chemical sensor of nitrate ions. J. Eng. Sci. Technol. 76: 1-6.
[30] Silva R. F., Zaniquelli M. E. D., (2002), Morphology of nanometric size particulate aluminium-doped zinc oxide films. Colloids Surf. A. 551: 198-203.
[31] Song J. Y., Jang H. K., Kim B. S., (2009), Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Bio. Chem. 44: 1133–1138.
[32] Niu Z., Yang Z., Hu Z., Lu Y., Han C. C., (2003), Polyaniline-Silica composite conductive capsules and hollow spheres. Adv. Funct. Mater. 13: 949-954.
[33] Ayad M. M., Salahuddin N. A., Minisy I. M., Amer W. A., (2014), Chitosan/ polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sens. Actuators B. 202: 144-153.
[34] Sonker R. K., Yadav B. C., (2017), Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection. J. Taiwan Inst. Chem. Eng. 77: 276-281.
[35] Gu L., Wang J., Qi R., Wang X., Xu P., Han X., (2012), A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J. Mol. Catal. A. Chem. 357: 19-25.
[36] Melaku W., Yadav, O. P., Kebede T., (2014), Photo-catalytic removal of methyl orange dye by polyaniline modified ZnO using visible radiation. Sci. Technol. Art. Res. J. 3: 93-102.
[37] Singh S., Rama N., Rao M. S. R., (2006), Influence of d–d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 88: 222111-222113.
[38] Wang C. C., Luconi M. O., Masi A. N., Fernández L. P., (2009), Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon. Talanta. 77: 1238-1243.
[39] Tang H., Sundari R., Lintang H. O., Yuliati L., (2016), Detection of nitrite and nitrate ions in water by graphene oxide as a potential fluorescence sensor. IOP Conf. Ser.: Mater. Sci. Eng. 107: 012027-012033.