[1] Abdollahi B., Salari D., Zarei M., (2022), Synthesis and characterization of magnetic Fe3O4@ SiO2-MIL-53 (Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. J. Env. Chem. Eng. 10: 107144-107148.
[2] Kończyk J., Żarska S., Ciesielski W., (2019), Adsorptive removal of Pb (II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: Kinetic, mechanism, and thermodynamic studies. Colloids and Surf. A: Physicochem. Eng. Asp. 575: 271-282.
[3] Awual M. R., Hasan M. M., Islam A., Rahman M. M., Asiri A. M., Khaleque M. A., Sheikh M. C., (2019), Offering an innovative composited material for effective lead (II) monitoring and removal from polluted water. J. Cleaner Prod. 231: 214-223.
[4] Abdel-Ghani N., Hefny M., El-Chaghaby G. A., (2007), Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Env. Sci. Technol. 4: 67-73.
[5] Zhang K., Gao X., Zhang Q., Li T., Chen H., Chen X., (2017), Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J. Alloys & Comp. 721: 268-275.
[6] Zhao W., Tian Y., Chu X., Cui L., Zhang H., Li M., Zhao P., (2021), Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Separ. Purif. Technol. 257: 117917-117921.
[7] Zhou L., Ji L., Ma P.-C., Shao Y., Zhang H., Gao W., Li Y., (2014), Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II). J. Hazard. Mater. 265: 104-114.
[8] Jiang R., Zhu H.-Y., Fu Y.-Q., Zong E.-M., Jiang S.-T., Li J.-B., Zhu J.-Q., Zhu Y.-Y., (2021), Magnetic NiFe2O4/MWCNTs functionalized cellulose bioadsorbent with enhanced adsorption property and rapid separation. Carbohyd. Polym. 252: 117158-117162.
[9] Luo X., Lei X., Cai N., Xie X., Xue Y., Yu F., (2016), Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain. Chem. Eng. 4: 3960-3969.
[10] Ren L., Lin H., Meng F., Zhang F., (2019), One-step solvothermal synthesis of Fe3O4@ Carbon composites and their application in removing of Cr (VI) and Congo red. Ceram. Int. 45: 9646-9652.
[11] Wang N., Ouyang X.-K., Yang L.-Y., Omer A. M., (2017), Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb (II) from water. ACS Sustain. Chem. Eng. 5: 10447-10458.
[12] Aslibeiki B., Eskandarzadeh N., Jalili H., Varzaneh A. G., Kameli P., Orue I., Chernenko V., Hajalilou A., Ferreira L., Cruz M., (2022), Magnetic hyperthermia properties of CoFe2O4 nanoparticles: Effect of polymer coating and interparticle interactions. Ceram. Int. In Press.
[13] Hakimyfard A., Khademinia S., (2022), Hirshfeld surface analysis of solid-state synthesized NiFe2O4 nanocomposite and application of it for photocatalytic degradation of Water pollutant dye. Int. J. Nano Dimens. 13: 155-167.
[14] Bagheri Gh. A., Ashayeri V., Mahanpoor K., (2013), Photocatalytic efficiency of CuFe2O4 for photodegradation of acid red 206. Int. J. Nano Dimens. 4: 111-115.
[15] Abideen Idowu A., Sarafadeen Olateju K., Oluwatobi Samson A., (2019), Synthesis of MnFe2O4 nanoparticles for adsorption of digestive enzymes: Kinetics, isothermal and thermodynamics studies. Int. J. Nano Dimens. 10: 330-339.
[16] Ensafi A. A., Allafchian A. R., Rezaei B., Mohammadzadeh R., (2013), Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry. Mater. Sci. Eng.: C. 33: 202-208.
[17] Kafshgari L. A., Ghorbani M., Azizi A., (2017), Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl. Surf. Sci. 419: 70-83.
[18] Foroutan R., Peighambardoust S. J., Esvandi Z., Khatooni H., Ramavandi B., (2021), Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4 magnetic composite powder: A comparative study. J. Env. Chem. Eng. 9: 104752-104757.
[19] Sadegh H. R., Shahriary Ghoshehkandi R., Masjedi A., Mahmoodi Z., Kazemi M., (2016), A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions. Int. J. Nano Dimens. 7: 109-120.
[20] Hazarika M., Chinnamuthu P., Borah J., (2022), Enhanced photocatalytic efficiency of MWCNT/NiFe2O4 nanocomposites. Phys. E: Low-dimens. Sys. Nanostruc. 139: 115177-115182.
[21] Forghani M., Azizi A., Livani M. J., Kafshgari L. A., (2020), Adsorption of lead (II) and chromium (VI) from aqueous environment onto metal-organic framework MIL-100 (Fe): Synthesis, kinetics, equilibrium and thermodynamics. J. Solid State Chem. 291: 121636-121641.
[22] Powell K. J., Brown P. L., Byrne R. H., Gajda T., Hefter G., Leuz A.-K., Sjöberg S., Wanner H., (2009), Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ , OH–, Cl–, CO32–, SO42–, and PO43–systems (IUPAC Technical Report). Pure and Appl. Chem. 81: 2425-2476.
[23] Sylva R. N., Brown P. L., (1980), The hydrolysis of metal ions. Part 3. Lead (II). J. Chem. Soc. Dalton Transactions. 1577-1581.
[24] Breza M., Manová A., (2002), On the structure of Lead (II) complexes in aqueous solutions. III. Hexanuclear clusters. Collec. Czechoslovak Chem. Communic. 67: 219-227.
[25] Lian Q., Ahmad Z. U., Gang D. D., Zappi M. E., Fortela D. L. B., Hernandez R., (2020), The effects of carbon disulfide driven functionalization on graphene oxide for enhanced Pb (II) adsorption: Investigation of adsorption mechanism. Chemosphere. 248: 126078-126082.
[26] Mondal S. K., Welz A., Rezaei F., Kumar A., Okoronkwo M. U., (2020), Structure–property relationship of geopolymers for aqueous Pb removal. ACS Omega. 5: 21689-21699.
[27] Das A., Bar N., Das S., (2022), Adsorptive removal of Pb (II) ion on arachis hypogaea’s shell: Batch experiments, statistical, and GA modeling. Int. J. Env. Sci. Technol. 1-14.
[28] Yu X., Wang D., Yuan B., Song L., Hu Y., (2016), The effect of carbon nanotubes/NiFe2O4 on the thermal stability, combustion behavior and mechanical properties of unsaturated polyester resin. RSC Adv. 6: 96974-96983.
[29] Qu G., Zhou J., Liang S., Li Y., Ning P., Pan K., Ji W., Tang H., (2022), Thiol-functionalized multi-walled carbon nanotubes for effective removal of Pb (II) from aqueous solutions. Mater. Chem. Phys. 278: 125688-125692.
[30] Neolaka Y. A., Lawa Y., Naat J., Riwu A. A., Darmokoesoemo H., Widyaningrum B. A., Iqbal M., Kusuma H. S., (2021), Indonesian kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb(II) adsorption from aqueous solution. Env. Technol. Innovat. 24: 101997-102002.
[31] Eletta O. A., Ayandele F. O., Ighalo J. O., (2021), Adsorption of Pb(II) and Fe(II) by mesoporous composite activated carbon from Tithonia diversifolia stalk and Theobroma cacao pod. Biomass Convers. Bioref. 1-10.
[32] Fu C., Zhu X., Dong X., Zhao P., Wang Z., (2021), Study of adsorption property and mechanism of lead (II) and cadmium (II) onto sulfhydryl modified attapulgite. Arab. J. Chem. 14: 102960-102966.
[33] Yan S., Ren X., Zhang F., Huang K., Feng X., Xing P., (2022), Comparative study of Pb2+, Ni2+, and methylene blue adsorption on spherical waste solid-based geopolymer adsorbents enhanced with carbon nanotubes. Separ. Purif. Technol. 284: 120234-120239.