Nanotechnology in environmental sustainability and performance of nanomaterials in recalcitrant removal from contaminated Water: A review

Document Type : Review

Authors

1 Department of Chemistry, Integral University, Lucknow, 226020, UP, India.

2 Department of Applied Sciences and Humanities, University of Lucknow, Faculty of Engineering and Technology, 226031, UP, India.

Abstract

In this review article, the implementation of nanomaterials such as metal oxides and their composites, carbon nanotubes, dendrimers, and polymer nanocomposites in wastewater decontamination have been discussed. Nanomaterials have a lot of potentials, due to their high pollution sensing ability and larger surface area. Nanomaterials are ideal for eliminating harmful heavy metals and eradicating severe infections spreading microorganisms, organic waste and inorganic contaminants from the environment. The article reviews recent developments in wastewater treatment using various nanomaterials. Nanotechnology has resulted in multiple effective nano techniques for environmental remediation such as photocatalysis, nano adsorption and nanofiltration, which are more exact and accurate in eradicating recalcitrant. Novel semiconductor photocatalysts, nano adsorbents, nanocomposites, and other nanostructures have been used to overcome these difficulties and achieve maximal performance at a low cost. This review provides the techno-functional applications of nanomaterials in wastewater remediation.

Keywords


  1. Gao T., Wang X. C., Chen R., Ngo H. H., Guo W., (2015), Disability adjusted life year (DALY): A useful tool for quantitative assessment of environmental pollution. Sci. Total Environ. 511: 268-287.
  2. Abdelbasir S. M., Shalan A. E., (2019), An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 36: 1209-1225.
  3.  Yayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F., (2020), The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules. 25: 112-118.
  4. Bavasso I., Vilardi G., Stoller M., Chianese A., Di Palma, L., (2016), Perspectives in nanotechnology based innovative applications for the environment.  Chem. Eng. J. 47: 512-518.
  5. Awasthi A., Jadhao P., Kumari K., (2019), Clay nano-adsorbent: structures, applications and mechanism for water treatment. SN Appl. Sci. 1: 1-21.
  6. Pourahmad A., Sohrabnezhad S., Sadeghi B., (2010), Removal of heavy metals from aqueous solution by mordenite nanocrystals.  Int. J. Nanosci. Nanotechnol. 6: 31-41.
  7. Khan N. A., Khan S. U., Ahmed S., Farooqi I. H., Dhingra A., Hussain A., Changani F., (2019), Applications of nanotechnology in water and wastewater treatment: A review. Asian J. Water Environ. Pollut. 16: 81-86.
  8. Deshpande B. D., Agrawal P. S., Yenkie M. K. N., Dhoble S. J., (2020), Prospective of nanotechnology in degradation of waste water: A new challenges. Nano-Struct. Nano-Objects. 22: 100442-100448.
  9. Yusuf M., (2019), Synthetic dyes: A threat to the environment and water ecosystem. Text. Res. J. 21: 11-26.
  10. Chung K. T., (2016), Azo dyes and human health: A review. Environ. Sci. Health C. 34: 233-261.
  11. Patel S. K., Patel S. G., Patel G. V., (2020), Degradation of reactive dye in aqueous solution by Fenton, photo-Fenton process and combination process with activated charcoal and TiO2. Natl. Acad. Sci. India - Phys. Sci.  90: 579-591.
  12. Dwivedi A. K., (2017), Researches in water pollution: A review. Int. Res. J. Nat. Sci.4: 118-142.
  13. Ahmad A., Mohd-Setapar S. H., Chuong C. S., Khatoon A., Wani W. A., Kumar R., Rafatullah M., (2015), Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 5: 30801-30818.
  14. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B., (2016), Nanomaterials-enabled water and wastewater treatment. NanoImpact. 3: 22-39.
  15. Briggs A. M., Cross M. J., Hoy D. G., Sànchez-Riera L., Blyth F. M., Woolf A. D., March L., (2016), Musculoskeletal health conditions represent a global threat to healthy aging: A report for the 2015 World Health Organization world report on ageing and health. The Gerontologist. 56: S243-S255.
  16. Vinesh V., Preeyanghaa M., Kumar T. N., Ashokkumar M., Bianchi C. L., Neppolian B., (2022), Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis.  Environ. Res. 207: 112112-112116.
  17. Abdulhameed A. S., Mohammad A. T., Jawad A. H., (2019), Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye.  J. Clean. Prod. 232: 43-56.
  18. Fathi E., Derakhshanfard F., Gharbani, P., Ghazi Tabatabaei Z., (2020), Facile synthesis of MgO/C3N4 nanocomposite for removal of reactive orange 16 under visible light.  Inorg. Organomet. Polym. Mater. 30: 2234-2240.
  19. Liu C., Hong T., Li H., Wang L., (2018), From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China. Energy Policy. 121: 300-313.
  20. Rajasulochana P., Preethy V., (2016), Comparison on efficiency of various techniques in treatment of waste and sewage water: A comprehensive review. Resource Effic. Technol. 2: 175-184.
  21. Wang J., Wang Z., Vieira C. L., Wolfson J. M., Pingtian G., Huang S., (2019), Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrason. Sonochem. 55: 273-278.
  22. Tang K., Gong C., Wang D., (2016), Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China. Sci. Total Environ. 541: 42-50.
  23. Sizmur T., Fresno T., Akgül G., Frost H., Moreno-Jiménez E., (2017), Biochar modification to enhance sorption of inorganics from water.  Bioresour. Technol. 246: 34-38.
  24. Ibrahim R. K., Hayyan M., AlSaadi M. A., Hayyan A., Ibrahim S., (2016), Environmental application of nanotechnology: Air, soil, and water. Sci. Pollut. Res. 23: 13754-13788.
  25. Mukhopadhyay R., Bhaduri D., Sarkar B., Rusmin R., Hou D., Khanam R., Ok Y. S., (2020), Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment. Hazard. Mater. 383: 121125-112130.
  26. Anjum M., Miandad R., Waqas M., Gehany F., Barakat M. A., (2019), Remediation of wastewater using various nano-materials. Arab. J. Chem. 12: 4897-4919.
  27. Kumar A., Sharma G., Naushad M., Ala'a H., García-Peñas A., Mola G. T., Stadler F. J., (2020), Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review.  Chem. Eng. J. 382: 122937-122942.
  28. Yarima A., Ali R., Abdullahi A. A., Idris Z., (2020), Nanotechnology: Review on emerging techniques in remediating water and soil pollutions.  Appl. SCI. Environ. Manag.24: 933-941.
  29. Meybodi S. M., Amiri F., Shirdareh A., Nasrolahi A., Sadeghi B., Nekouei J., (2011), Removal of cobalt from waste waters of DMT industrial plant in Isfahan by microbial biomass. Iranian J. Biolog. Sci.5: 1-11.
  30. Chaturvedi S., Dave P. N., (2019), Water purification using nanotechnology an emerging opportunity. Chem. Methodol. 3: 115-144.
  31. Akhtar N., Syakir Ishak M. I., Bhawani S. A., Umar K., (2021), Various natural and anthropogenic factors responsible for water quality degradation: A review. Water. 13: 2660-2666.
  32. Huang D., Wu J., Wang, L., Liu X., Meng J., Tang X., Xu J., (2019), Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water.  Chem. Eng. J. 358: 1399-1409.
  33. Wei X., Xu X., Wu J., Li C., Chen J., Lv B., Xiang H., (2019), SiO2 modified nanocomposite nanofiltration membranes with high flux and acid resistance. Appl. Polym. Sci. 136: 47436-47441.
  34. Wang H., Cai S., Shan L., Zhuang M., Li N., Quan G., Yan J., (2019), Adsorptive and reductive removal of chlorophenol from wastewater by biomass-derived mesoporous carbon-supported sulfide nanoscale zerovalent iron. Nanomat. 9: 1786-1771.
  35. Li S., Hu S., Jiang W., Liu Y., Zhou Y., Liu J., Wang Z., (2018), Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. Colloid Interf. Sci. 530: 171-178.
  36. Jo W. K., Kim Y. G., Tonda S., (2018), Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation. Hazard. Mater.  357: 19-29.
  37. Kang J., Duan X., Wang C., Sun H., Tan X., Tade M. O., Wang S., (2018), Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem. Eng. J. 332: 398-408.
  38. Mohamed A., El-Sayed R., Osman T. A., Toprak M. S., Muhammed M., Uheida A., (2016), Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ. Res.145: 18-25.
  39. Bano S., Ahmad N., Sultana S., Sabir S., Khan M. Z., (2019), Preparation and study of ternary polypyrrole-tin oxide-chitin nanocomposites and their potential applications in visible light photocatalysis and sensors Environ. Chem. Eng. 7: 103012-103018.
  40. Pirzada B. M., Mir N. A., Qutub N., Mehraj O., Sabir S., Muneer M., (2015), Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Sci. Eng. B. 193: 137-145.
  41. Ahmed S. N., Haider W., (2018), Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnol. 29: 342001-342006.
  42. Xue X. Y., Cheng R., Shi L., Ma Z., Zheng X., (2017), Nanomaterials for water pollution monitoring and remediation. Chem. Lett. 15: 23-27.
  43. Wang D., Pillai S. C., Ho S. H., Zeng J., Li Y., Dionysiou D. D., (2018), Plasmonic-based nanomaterials for environmental remediation.  Appl. Catal. B: Environ. 237: 721-741.
  44. Santhosh C., Velmurugan V., Jacob G., Jeong S. K., Grace A. N., Bhatnagar A., (2016), Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 306: 1116-1137
  45. Libralato G., Baudo R., Buttino I., Faimali M., Mugnai C., Ghirardini A. V., (2016), Environmental emergencies: Ecotoxicology as a management tool. 6th Biannual Ecotoxicology MEeting, 11-13th November, 2014, Livorno, Italy.  Ecotoxicol. Environ. Saf. 123: 1-94.
  46. Corsi I., Winther-Nielsen M., Sethi R., Punta C., Della Torre C., Libralato G., Buttino I., (2018), Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation.  Ecotoxicol. Environ. Saf. 154: 237-244.
  47. Hassan T., Salam A., Khan A., Khan S. U., Khanzada H., Wasim M., Kim I. S., (2021), Functional nanocomposites and their potential applications: A review. J. Polym. Res. 28: 1-22.
  48. Aamir M., Tolouei-Rad M., Giasin K., Nosrati A., (2019), Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review.  J. Adv. Manuf. Technol. 105: 2289-2308.
  49. Valino A. D., Dizon J. R. C., Espera Jr A. H., Chen Q., Messman J., Advincula R. C., (2019), Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Polym. Sci. 98: 101162-101166.
  50. Fularz A., Almohammed S., Rice J. H., (2020), Oxygen incorporation-induced SERS enhancement in silver nanoparticle-decorated ZnO nanowires. ACS Appl. Nano Mater. 3: 1666-1673.
  51. Wei H., Wang H., Li A., Cui D., Zhao Z., Chu L., Guo Z., (2020), Multifunctions of polymer nanocomposites: Environmental remediation, electromagnetic interference shielding, and sensing applications.  Nano Mat. 6: 174-184.
  52. Ravikumar R., Ganesh M., Ubaidulla U., Choi E. Y., Jang H. T., (2017), Preparation, characterization, and in vitro diffusion study of nonwoven electrospun nanofiber of curcumin-loaded cellulose acetate phthalate polymer. Saudi Pharm. J. 25: 921-926.
  53. Gao Y., Picot O. T., Bilotti E., Peijs T., (2017), Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites.  Polym. J. 86: 117-131.
  54. Phan D. N., Khan M. Q., Nguyen N. T., Phan T. T., Ullah A., Khatri M., Kim I. S., (2021), A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr. Polym. 252: 117175-117179.
  55. Khalil R., Homaeigohar S., Häußler D., Elbahri M., (2016), A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs). Sci. Rep. 6: 1-10.
  56. Cai Z., Wang X., Luo B., Hong W., Wu L., Li L., (2017), Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: The effect of nanoparticle distribution.  Sci. Technol. 145: 105-113.
  57. Feldman D., (2015), Polyblend nanocomposites. J. Macromol. Sci. A. 52: 648-658.
  58. Francis V., Jain P. K., (2016), Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys. Prototyp. 11: 109-121.
  59. Saveleva M. S., Eftekhari K., Abalymov A., Douglas T. E., Volodkin D., Parakhonskiy B. V., Skirtach A. G., (2019), Hierarchy of hybrid materials: The place of inorganics-in-organics in it, their composition and applications. Chem. 7: 179-185.
  60. Mohammadnezhad G., Behbahan A. K., (2020), Polymer matrix nanocomposites for heavy metal adsorption: A review.  Iran. Chem. Soc. 17: 1259-1281.
  61. Wang N., Ma W., Ren Z., Du Y., Xu P., Han X., (2018), Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. Mater. ChemA. 6: 884-895.
  62. Li Y., Chen H., Wang Q., Li G., (2021), Further modification of oil–water separation membrane based on chitosan and titanium dioxide. J. Mater. Sci: Mater. Electron. 32: 4823-4832.
  63. Ojha D. P., Joshi M. K., Kim H. J., (2017), Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceram. Int. 43: 1290-1297.
  64. Ucar A., Findik M., Gubbuk I. H., Kocak N., Bingol H., (2017), Catalytic degradation of organic dye using reduced graphene oxide–polyoxometalate nanocomposite. Chem. Phys. 196: 21-28.
  65. De Witte T. M., Fratila-Apachitei L. E., Zadpoor A. A., Peppas N. A., (2018), Bone tissue engineering via growth factor delivery: From scaffolds to complex matrices. Biomater. 5: 197-211.
  66. Yu J., Xia H., Ni Q. Q., (2018), A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering. Mater. Sci. 7: 4734-4744.
  67. Chen L., Hu J., Ran J., Shen X., Tong H., (2016), Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue engineering. Compos. 37: 81-90.
  68. Pawar S. P., Gandi M., Saraf C., Bose S., (2016), Exceptional microwave absorption in soft polymeric nanocomposites facilitated by engineered nanostructures. Mater. Chem. C. 4: 4954-4966.
  69. Rajavel K., Luo S., Wan Y., Yu X., Hu Y., Zhu, P., Wong C., (2020), 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Part A Appl. Sci. Manuf. 129: 105693-105701.
  70. Tiwari S., Singh A. K., Balasubramanian S. K., Takashima W., Prakash R., (2016), Poly-3-hexylthiophene (P3HT)/graphene nanocomposite field-effect-transistor as ammonia detector. Nanosci. Nanotechnol. 16: 9634-9641.
  71. Ahamad T., Naushad M., Alshehri S. M., (2019), Ultra-fast spill oil recovery using a mesoporous lignin based nanocomposite prepared from date palm pits (Phoenix dactylifera L.). .J. Biol. Macromol. 130: 139-147.
  72. Hoang A. T., Nguyen X. P., Duong X. Q., Huynh T. T., (2021), Sorbent-based devices for the removal of spilled oil from water: A review.  Sci. Pollut. Res. 28: 28876-28910.
  73. Karatepe Ö., Yıldız Y., Pamuk H., Eris S., Dasdelen Z., Sen F., (2016), Enhanced electrocatalytic activity and durability of highly monodisperse Pt@ PPy–PANI nanocomposites as a novel catalyst for the electro-oxidation of methanol. RSC Adv. 6: 50851-50857.
  74. Imani R., Mohabatpour F., Mostafavi F., (2018), Graphene-based nano-carrier modifications for gene delivery applications. Carbon. 140: 569-591.
  75. Horst M. F., Alvarez M., Lassalle V. L., (2016), Removal of heavy metals from wastewater using magnetic nanocomposites: Analysis of the experimental conditions. Sci. Technol. 51: 550-563.
  76. Majumdar S., Mahanta D., (2020), Deposition of an ultra-thin polyaniline coating on a TiO2 surface by vapor phase polymerization for electrochemical glucose sensing and photocatalytic degradation. RSC Adv. 10: 17387-17395.
  77. Bouziane Errahmani K., Benhabiles O., Bellebia S., Bengharez Z., Goosen M., Mahmoudi H., (2021), Photocatalytic nanocomposite polymer-TiO2 membranes for pollutant removal from wastewater. Catalysts. 11: 402-406.
  78. Pathak P., Hwang J. H., Li R. H., Rodriguez K. L., Rex M. M., Lee W. H., Cho H. J., (2021), Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Actuators B: Chem. Article ID: 236281041.
  79. Yu S., Cui J., Wang J., Zhong C., Wang X., Wang N. (2020), Facile fabrication of Cu (II) coordinated chitosan-based magnetic material for effective adsorption of reactive brilliant red from aqueous solutionJ. Biol. Macromol. 149: 562-571
  80. Zavareh S., Avanes A., Beiramyan P., (2017), Effective and selective removal of aromatic amines from water by Cu2+-treated chitosan/alumina nanocomposite.  Sci. Technol. 35: 218-240.
  81. Sangareswari M., Meenakshi Sundaram M., (2017), Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater Appl. Water Sci.7: 1781-1790.
  82. Vidya J., Balamurugan P., (2019), Photocatalytic degradation of methylene blue using PANi-NiO nanocomposite under visible light irradiation. Res. Express. 6: 0950c8.
  83. Kaur K., Jindal R., (2018), Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents.  Environ. Chem. Eng. 6: 7091-7101.
  84. Pathania D., Gupta D., Ala’a H., Sharma G., Kumar A., Naushad M., Alshehri S. M., (2016), Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation. Photochem. Photobiol. 329: 61-68.
  85. Zhang Y., Xie C., Gu F. L., Wu H., Guo Q., (2016), Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly (3-hexylthiophene). Hazard. Mater. 315: 23-34.
  86. Petronella F., Truppi A., Ingrosso C., Placido T., Striccoli M., Curri M. L., Comparelli R., (2017), Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today. 281: 85-100.
  87. Park W., Shin, H., Choi B., Rhim W. K., Na K., Han D. K., (2020), Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 114: 100686-100691.
  88. Sopp A. I. A., Heijman S. G. J., Gensburger I., Shantz A., Van Halem D., Kroesberge J., Smeets P. W. M. H., (2015), Critical parameters in the production of ceramic pot filters for household water treatment in developing countries. J. Water Health. 13: 587-599.
  89. Bushra R., Shahadat M., Ahmad A., Nabi S. A., Umar K., Muneer M., Raeissia A. S., Owais M., (2014), Synthesis, characterization, antimicrobial activity and applications of composite adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 264: 481–489.
  90. Mao Y., Li Y., Zou Y., Shen X., Zhu L., Liao G., (2019), Solvothermal synthesis and photocatalytic properties of ZnO micro/nanostructures. Ceram. Int. 45: 1724-1729.
  91. De A. K., Majumdar S., Pal S., Kumar S., Sinha I., (2020), Zn doping induced band gap widening of Ag2O nanoparticles.  J. Alloys Compd. Article ID: 213465195.
  92. Tadjarodi A., Imani M., Izadi M., Shokrayian J., (2015), Solvent free synthesis of ZnO nanostructures and evaluation of their capability for water treatment. Mater. Res. Bull. 70: 468-477.
  93. Keerthana P., Vijayakumar S., Vidhya E., Punitha V. N., Nilavukkarasi M., Praseetha P. K., (2021), Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Ind. Crops. Prod. 170: 113762-113768.
  94. Lu H., Wang J., Stoller M., Wang T., Bao Y., Hao H., (2016), An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016: Article ID 4964828.
  95. Lee K. M., Lai C. W., Ngai K. S., Juan J. C., (2016), Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 88: 428-448.
  96. Jäger M., Jennissen H. P., Dittrich F., Fischer A., Köhling H. L., (2017), An.timicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials. 10: 1302-1306.
  97. Hu B., He M., Chen B., (2015), Nanometer-sized materials for solid-phase extraction of trace elements. Anal. Bioanal. Chem. 407: 2685-2710.
  98. Usman M. R., Noviyanti A. R., Eddy D. R., (2017), Photocatalytic degradation of diazinon using titanium oxide synthesized by alkaline solvent. Indones. J. Chem. 17: 22-29.
  99. Waghmode M. S., Gunjal A. B., Mulla J. A., Patil N. N., Nawani N. N., (2019), Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 1: 1-9.
  100. Dadvar E., Kalantary R. R., Ahmad Panahi H., Peyravi M., (2017), Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye. Chem. 2017: Article ID 6217987.
  101. Palani G., Arputhalatha A., Kannan K., Lakkaboyana S. K., Hanafiah M. M., Kumar V., Marella R. K., (2021), Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment: A review. Molecules. 26: 2799-2804.
  102. Đukić A. B., Kumrić K. R., Vukelić N. S., Dimitrijević M. S., Baščarević Z. D., Kurko S. V., Matović L. L., (2015), Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite kaolinite/TiO2 composite. Appl. Clay Sci. 103: 20-27.
  103. Youssef A. M., Malhat F. M., (2014), Selective removal of heavy metals from drinking water using titanium dioxide nanowire. Macromol. Symp. 337: 96-101.
  104. Chang T., Babu R. P., Zhao W., Johnson C. M., Hedstrom P., Odnevall I., Leygraf C. (2021), High-resolution microscopical studies of contact killing mechanisms on copper-based surfaces. ACS Appl. Mater. Interf. 13: 49402-49413.
  105. Almasi H., Jafarzadeh P., Mehryar L., (2018), Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohyd. Polym. 186: 273-281.
  106. Kouhkan M., Ahangar P., Babaganjeh L. A., Allahyari-Devin M., (2020), Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr. Nanosci. 16: 101-111.
  107. Kung M. L., Hsieh S. L., Wu C. C., Chu T. H., Lin Y. C., Yeh B. W., Hsieh S., (2015), Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale. 7: 1820-1829.
  108. Karim M. N., Singh M., Weerathunge P., Bian P., Zheng R., Dekiwadia C., Bansal V., (2018), Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl. Nano Mater. 1: 1694-1704.
  109. Abdullah N. H., Shameli K., Abdullah E. C., Abdullah L. C., (2019), Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes.  B: Eng. 162: 538-568.
  110. Park O. K., Tiwary C. S., Yang Y., Bhowmick S., Vinod S., Zhang, Q., Ajayan P. M., (2017), Magnetic field-controlled graphene oxide-based origami with enhanced surface area and mechanical properties. Nanoscale. 9: 6991-6997.
  111. Naseem T., Durrani T., (2021), The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review.  Environ. Chem. Ecotoxicol. 3: 59-75.
  112. Gutierrez A. M., Dziubla T. D., Hilt J. Z., (2017), Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment.  Environ. Health. 32: 111-117.
  113. Iqbal A., Iqbal K., Li B., Gong D., Qin W., (2017), Recent advances in iron nanoparticles: Preparation, properties, biological and environmental application. Nanosci. Nanotechnol. 17: 4386-4409.
  114. Borrego B., Lorenzo G., Mota-Morales J. D., Almanza-Reyes H., Mateos, F., López-Gil, E., Bogdanchikova N., (2016), Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. : Nanotechnol. Biol. Med. 12: 1185-1192.
  115. Das C. A., Kumar V. G., Dhas T. S., Karthick V., Govindaraju K., Joselin J. M., Baalamurugan J., (2020), Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances.  Agric. Biotechnol. 27: 101593-101597.
  116. Cheng L., Li R., Liu G., Zhang Y., Tang X., Wang J., Qin, Y., (2018), Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies.  J. Nanomedic.13: 3311-3317.
  117. Jiang Q., Lin Z., Gu B., Pang C., Wang X., (2020), Green synthesis and immobilization of AgNPs by lumpy corn stalk as interlayer filling material for durable antibacterial. Ind Crops Prod.158: 112987-112995.
  118. Yang H., Li G., Stansbury J. W., Zhu X., Wang X., Nie J., (2016), Smart antibacterial surface made by photopolymerization. ACS Appl. Mater. Interf.8: 28047-28054.
  119. Dhanalekshmi K. I., Meena K. S., (2016), DNA intercalation studies and antimicrobial activity of Ag@ZrO2 core–shell nanoparticles in vitro. Sci. Eng. C. 59: 1063-1068.
  120. Ferreira A. M., Roque É. B., Fonseca F. V. D., Borges C. P., (2015), High flux microfiltration membranes with silver nanoparticles for water disinfection.  Water Treat. 56: 3590-3598.
  121. Mallakpou S., Khadem E., (2016), Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications.  Eng. J.302: 344-367.
  122. Mandal S., Adhikari S., Pu S., Wang X., Kim D. H., Patel R. K., (2019), Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere. 234: 596-607.
  123. Sun C., Yang S. T., Gao Z., Yang S., Yilihamu A., Ma Q., Xue F., (2019), Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Chem. Phys.223: 751-757.
  124. Isari A. A., Payan A., Fattahi M., Jorfi S., Kakavandi B., (2018), Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Surf. Sci. 462: 549-564.
  125. Zhang J., Li L., Xiao Z., Liu D., Wang S., Zhang J., Zhang W., (2016), Hollow sphere TiO2–ZrO2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H2 evolution from water splitting. ACS Sustain. Chem. Eng. 4: 2037-2046.
  126. Sun X., Xu, S., Gao Y., Yue M., Yue Q., Gao B., (2017), 3D hierarchical golden wattle-like TiO2 microspheres: Polar acetone-based solvothermal synthesis and enhanced water purification performance.  Eng. Comm. 19: 2187-2194.
  127. Mohammadi M., Sabbaghi S., Sadeghi H., Zerafat M. M., Pooladi R., (2016), Preparation and characterization of TiO2/ZnO/CuO nanocomposite and application for phenol removal from wastewaters. Desalination Water Treat57: 799-809.
  128. Huang J., Li D., Li R., Chen P., Zhang, Q., Liu H., Feng Y., (2020), One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin.Hazard. Mater. 386: 121634-121638.
  129. Samad A., Furukawa M., Katsumata H., Suzuki T., Kaneco S., (2016), Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst Photochem. Photobiol. 325: 97-103.
  130. Shafi A., Ahmad N., Sultana S., Sabir S., Khan M. Z., (2019), Ag2S-sensitized NiO–ZnO heterostructures with enhanced visible light photocatalytic activity and acetone sensing property. ACS Omega. 4: 12905-12918.
  131. Gopinath K. P., Rajagopal M., Krishnan A., Sreerama S. K., (2021), A review on recent trends in nanomaterials and nanocomposites for environmental applications. Anal. Chem. 17: 202-243.
  132. Li Z., Sun Y., Xing J., Xing Y., Meng A., (2018), One step synthesis of Co/Cr-codoped ZnO nanoparticle with superb adsorption properties for various anionic organic pollutants and its regeneration. Hazard. Mater. 352: 204-214.
  133. Ge L., Wang, W., Peng Z., Tan F., Wang X., Chen J., Qiao X., (2018), Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol. 326: 393-401.
  134. Quan X., Sun Z., Xu J., Liu S., Han Y., Xu Y., Zhang X., (2020), Construction of an aminated MIL-53 (Al)-functionalized carbon nanotube for the efficient removal of bisphenol AF and metribuzin. Inorg. Chem. 59: 2667-2679. 
  135. Fan J., Abedi-Dorcheh K., Sadat Vaziri A., Kazemi-Aghdam F., Rafieyan S., Sohrabinejad M., Jahed V., (2022), A review of recent advances in natural polymer-based scaffolds for musculoskeletal tissue engineering. Polymers. 14: 2097-2105.
  136. Sun J., Zhao J., Chen Y., Wang L., Yun X., Huang Z., (2022), Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites. Today Phys. 22: 100595-100599.
  137. Arai Y., Inoue R., Goto K., Kogo Y., (2019), Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review.  Ceram. Int. 45: 14481-14489.
  138. Sharma S., Chauhan, I., Butola B. S., (2018), Application of textile materials in composites. Eng. Mater. Chapter 11: 419-461.
  139. Ayrikyan A., Prach O., Khansur N. H., Keller S., Yasui S., Itoh M., Webber K. G., (2018), Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites. Acta Mater. 148: 432-441.
  140. Chlup Z., Novotná L., Šiška F., Drdlík D., Hadraba H., (2020), Effect of residual stresses to the crack path in alumina/zirconia laminates.  Eur. Ceram. Soc. 40: 5810-5818.
  141. Askari E., Flores P., Silva F., (2018), A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.  Mech. Behav. Biomed. Mater. 77: 461-469.
  142. Visic B., Panchakarla L. S., Tenne R., (2017), Inorganic nanotubes and fullerene-like nanoparticles at the crossroads between solid-state chemistry and nanotechnology.  Am. Chem. Soc. 139: 12865-12878.
  143. Kumar V., Kumar P., Pournara A., Vellingiri K., Kim K. H., (2018), Nanomaterials for the sensing of narcotics: Challenges and opportunities. TrAC- Trends Anal. Chem. 106: 84-115.
  144. Anzar N., Hasan R., Tyagi M., Yadav N., Narang J., (2020), Carbon nanotube: A review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int. 1: 100003-100008.
  145. Liu B., Wu F., Gui H., Zheng M., Zhou C., (2017), Chirality-controlled synthesis and applications of single-wall carbon nanotubes. Acs Nano. 11: 31-53.
  146. Banerjee S., Kar K. K., (2020), Characteristics of carbon nanotubes. In Handbook of Nanocompos. Supercapac. Mater. Springer, Cham, 179-214.
  147. Kunduru K. R., Nazarkovsky M., Farah S., Pawar R. P., Basu A., Domb A. J., (2017), Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. Water Purific. Article ID: 136392741.
  148. Abbas A., Al-Amer A. M., Laoui T., Al-Marri M. J., Nasser M. S., Khraisheh M., Atieh M. A., (2016), Heavy metal removal from aqueous solution by advanced carbon nanotubes: C review of adsorption applications.  Purif. Technol. 157: 141-161.
  149. Zhang X., Cui H., Gui Y., Tang J., (2017), Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: A review. Nanoscale Res. Lett. 12: 1-12.
  150. Arora B., Attri P., (2020), Carbon nanotubes (CNTs): A potential nanomaterial for water purification. J. Sci.4: 135-139.
  151. Schwengber A., Prado H. J., Bonelli P. R., Cukierman A. L., (2017), Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers.  Sci. Eng. C. 76: 431-438.
  152. Ahmadi Sh., Farahpour M. R., Tabatabaei Z. Gh., (2022), Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid with incorporation of citral for the healing of infected full-thickness wounds.  Drug Deliv. Sci. Technol. 74: 103589.
  153. Abbasabadi O. R., Farahpour M. R., Tabatabaei Z. G., (2022), Accelerative effect of nanohydrogels based on chitosan/ZnO incorporated with citral to heal the infected full-thickness wounds; an experimental study.  J. Biol. Macromol. 217: 42-54.
  154. Kukkar D., Rani A., Kumar V., Younis S. A., Zhang M., Lee S. S., Kim K. H., (2020), Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills.  Colloid Interf. Sci. 570: 411-422.
  155. Atta N. F., Galal A., El-Gohary A. R., (2021), Gold-doped nano-perovskite-decorated carbon nanotubes for electrochemical sensing of hazardous hydrazine with application in wastewater sample.  Actuators B: Chem. 327: 128879-128884.
  156. Jame S. A., Zhou Z., (2016), Electrochemical carbon nanotube filters for water and wastewater treatment.  Rev. 5: 41-50.
  157. Wang Y., Pan C., Chu W., Vipin A. K., Sun L., (2019), Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis.  9: 439-445.
  158. Eltayeb N. E., Khan A., (2019), Design and preparation of a new and novel nanocomposite with CNTs and its sensor applications. J. Res. Technol.8: 2238-2246.
  159. Hayati B., Maleki A., Najafi F., Daraei H., Gharibi F., McKay G., (2016), Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater.  Mol. Liq. 224: 1032-1040.
  160. Isari A. A., Mehregan M., Mehregan S., Hayati F., Kalantary R. R., Kakavandi B., (2020), Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system.  Hazard. Mater. 390:122050-122058.
  161. Zhao H., Wang R., Deng H., Zhang L., Gao L., Zhang L., Jiao T., (2020), Facile preparation of self-assembled chitosan-based POSS-CNTs-CS composite as highly efficient dye absorbent for wastewater treatment. ACS Omega. 6: 294-300.
  162. Ali S., Rehman S. A. U., Shah I. A., Farid M. U., An A. K., Huang H., (2019), Efficient removal of zinc from water and wastewater effluents by hydroxylated and carboxylated carbon nanotube membranes: Behaviors and mechanisms of dynamic filtration.  Hazard. Mater. 365: 64-73.
  163. Moradi M., Haghighi M., Allahyari S., (2017), Precipitation dispersion of Ag–ZnO nanocatalyst over functionalized multiwall carbon nanotube used in degradation of Acid Orange from wastewater.  Saf. Environ. Prot. 107: 414-427.
  164. Mahmoodi N. M., Rezaei P., Ghotbei C., Kazemeini M., (2016), Copper oxide-carbon nanotube (CuO/CNT) nanocomposite: Synthesis and photocatalytic dye degradation from colored textile wastewater. Fibers Poly. 17: 1842-1848.
  165. Bankole M. T., Abdulkareem A. S., Mohammed I. A., Ochigbo S. S., Tijani J. O., Abubakre O. K., Roos W. D., (2019), Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents.  Sci. Rep. 9: 1-19.
  166. Ma J., Jiang Z., Cao J., Yu F., (2020), Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosph. 242: 125188-125193.
  167. Li X., Lu H., Zhang Y., He F., (2017), Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem. Eng. J. 316: 893-902.
  168. Viltres H., López Y. C., Levya C., Gupta N. K., Naranjo A. G., Acevedo–Peña P., Kim K. S., (2021), Polyamidoamine dendrimer-based materials for environmental applications: A review.  Mol. Liq. 334: 116017.
  169. Sohail I., Bhatti I. A., Ashar A., Sarim F. M., Mohsin M., Naveed R., Nazir A., (2020), Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution.  Mater. Res. Technol. 9: 498-506.
  170. Agboola O., Popoola P., Sadiku R., Sanni S. E., Fayomi S. O., Fatoba O. S., (2020), Nanotechnology in wastewater and the capacity of nanotechnology for sustainability. Int. Environ. Nanotechnol. 3: 1-45.
  171. Wazir M. B., Daud M., Ali F., Al-Harthi M. A., (2020), Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment.  Mol. Liq. 315: 113775.
  172. Lakshmi K., Rangasamy R., (2021), Synthetic modification of silica coated magnetite cored PAMAM dendrimer to enrich branched aaine groups and peripheral carboxyl groups for environmental remediation.  Mol. Struct. 1224: 129081.
  173. Baghayeri M., Alinezhad H., Fayazi M., Tarahomi M., Ghanei-Motlagh R., Maleki B., (2019), A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb (II) and Cd (II). Electrochim. Acta. 312: 80-88.
  174. Hayati B., Arami M., Maleki A., Pajootan E., (2016), Application of dendrimer/titania nanohybrid for the removal of phenol from contaminated wastewater.  Water Treat. 57: 6809-6819.
  175. Yin R., Niu Y., Zhang B., Hou C., Yang Z., Yang L., Cu Y., (2019), Removal of Cr (III) from aqueous solution by silica-gel/PAMAM dendrimer hybrid materials.  Sci. Pollut. Res. Int. 26: 18098-18112.
  176. Bafrooee A. A. T., Panahi H. A., Moniri E., Miralinaghi M., Hasani A. H., (2020), Removal of Hg2+ by carboxyl-terminated hyperbranched poly (amidoamine) dendrimers grafted superparamagnetic nanoparticles as an efficient adsorbent.  Sci. Pollut. Res. 1-21.
  177. Aliannejadi S., Hassani A. H., Panahi H. A., Borghei S. M., (2019), Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions.  Microchem. J. 145: 767-777.
  178. Prabhu S. M., Pawar R. R., Sasaki K., Park C. M., (2019), A mechanistic investigation of highly stable nano ZrO2 decorated nitrogen-rich azacytosine tethered graphene oxide-based dendrimer for the removal of arsenite from water. Chem. Eng. J. 370: 1474-1484.
  179. Alafif Z. O., Anjum M., Ansari M. O., Kumar R., Rashid J., Madkour M., Barakat M. A., (2019), Synthesis and characterization of S-doped-rGO/ZnS nanocomposite for the photocatalytic degradation of 2-chlorophenol and disinfection of real dairy wastewater.  Photochem. Photobiol. A. 377: 190-197.
  180. Yang R., Li T., Komarneni S., Liu B., (2021), Advances in recyclable and superior photocatalytic fibers: Material, construction, application and future perspective.  Comps. B: Eng. 205: 108512-108516.
  181. Sinar Mashuri S. I., Ibrahim M. L., Kasim M. F., Mastuli M. S., Rashid U., Abdullah A. H., Yun Hin T. Y., (2020), Photocatalysis for organic wastewater treatment: From the basis to current challenges for society. Catalysts. 10: 1260-1265.
  182. Gusain R., Gupta K., Joshi P., Khatri O. P., (2019), Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Colloid Interf. Sci. 272: 102009-102013.
  183. Mondal K., Sharma A., (2016), Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv. 6: 83589-83612.
  184. Theerthagiri J., Chandrasekaran S., Salla S., Elakkiya V., Senthil R. A., Nithyadharseni P., Kim H. S., (2018), Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation.  Solid State Chem. 267: 35-52.
  185. Bodhipaksha L. C., Sharpless C. M., Chin Y. P., MacKay A. A., (2017), Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin. Water Res. 110: 170-179.
  186. Serrà A., Philippe L., Perreaul, F., Garcia-Segura S., (2021), Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. Water Res. 188: 116543-116548.
  187. Magadevan D., Dhivya E., Mundari N. D. A., Mishra T., Aman N., (2019), Development of novel TiO2-Cu2 (OH) PO4 heterojunction as nanophotocatalyst for improved Cr (VI) reduction.  Environ. Chem. Eng. 7: 102968-102972.
  188. Ahmad R., Ahmad Z., Khan A. U., Mastoi N. R., Aslam M., Kim J., (2016), Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications.  Environ. Chem. Eng. 4: 4143-4164.
  189. Suave J., Amorim S. M., Moreira R. F., (2017), TiO2-graphene nanocomposite supported on floating autoclaved cellular concrete for photocatalytic removal of organic compounds.  Environ. Chem. Eng. 5: 3215-3223.
  190. Aghaei M., Sajjadi S., Keihan A. H., (2020), Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater. Sci. Pollut. Res. Int. 27: 11541-11553.
  191. El-Maghrabi H. H., Ali H. R., Younis S. A., (2017), Construction of a new ternary α-MoO3–WO3/CdS solar nanophotocatalyst towards clean water and hydrogen production from artificial wastewater using optimal design methodology. RSC Adv. 7: 4409-4421.
  192. Yosefi L., Haghighi M., Allahyari S., (2017), Solvothermal synthesis of flowerlike p-BiOI/n-ZnFe2O4 with enhanced visible light driven nanophotocatalyst used in removal of acid orange 7 from wastewater. Purif. Technol. 178: 18-28.
  193. Zhang Q., Du R., Tan C., Chen P., Yu G., Deng S., (2021), Efficient degradation of typical pharmaceuticals in water using a novel TiO2/ONLH nano-photocatalyst under natural sunlight. J. Hazard. Mater. 403: 123582-123586.
  194. Vafaee M., Olya M. E., Drean J. Y., Hekmati A. H., (2017), Synthesize, characterization and application of ZnO/W/Ag as a new nanophotocatalyst for dye removal of textile wastewater; kinetic and economic studies. Taiwan InstChem. Eng. 80: 379-390.
  195. Margan P., Haghighi M., (2017), Hydrothermal-assisted sol–gel synthesis of Cd-doped TiO2 nanophotocatalyst for removal of acid orange from wastewater. Sol-Gel Sci. Technol. 81: 556-569.
  196. Ye Z., Kong L., Chen F., Chen Z., Lin Y., Liu C., (2018), A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik. 164: 345-354.
  197. Tugaoen H. O. N., Garcia-Segura S., Hristovski K., Westerhoff P., (2017), Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci. Total Environ. 599: 1524-1551.
  198. Zhou G., Liu C., Chu L., Tang Y., Luo S., (2016), Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour. Technol.219: 451-457.
  199. Afroze S., Sen T. K., (2018), A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229: 1-50.
  200. Ersan G., Apul O. G., Perreault F., Karanfil T., (2017), Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 126: 385-398.
  201. Prathna T. C., Sharma S. K., Kennedy M., (2018), Nanoparticles in household level water treatment: An overview.  Purif. Technol. 199: 260-270.
  202. Tate J. E., Burton A. H., Boschi-Pinto C., Parashar U. D., (2016), World health organization–coordinated global rotavirus surveillance network, Agocs, M., Paladin, F. Global, regional, and national estimates of rotavirus mortality in children< 5 years of age, 2000–2013.  Infect. Dis .62: S96-S105.
  203. Mashkoor F., Nasar A., (2020), Carbon nanotube-based adsorbents for the removal of dyes from waters: A review.  Chem. Lett. 18: 605-629.
  204. Sims R. A., Harmer S. L., Quinton J. S., (2019), The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide. Polymers. 11: 410-416.
  205. Feiqiang G., Xiaolei L., Xiaochen J., Xingmin Z., Chenglong G., Zhonghao R., (2018), Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis. Colloids Surf. A: Physicochem. Eng. Asp. 555: 43-54.
  206. Kouotou D., Ghalit M., Ndi J. N., Martinez L. M. P., Ouahabi M. E., Ketcha J. M., Gharibi E. K., (2021), Removal of metallic trace elements (Pb2+, Cd2+, Cu2+, and Ni2+) from aqueous solution by adsorption onto cerium oxide modified activated carbon. Monit. Assess. 193: 1-15.
  207. Zhao W., Huang X., Wang Y., Sun S., Zhao C., (2016), A recyclable and regenerable magnetic chitosan absorbent for dye uptake. Polym. 150: 201-208.
  208. Sarmadi, N., Gharabaghi, M., Tamadoni Saray, M., Darestani, M., Garman D., Koshy P., Sorrell C. C., (2020), Highly mesoporous hybrid transition metal oxide nanowires for enhanced adsorption of rare earth elements from wastewater. Inorg. Chem. 60: 175-184.
  209. Gahlot R., Taki K., Kumar M., (2020), Efficacy of nanoclays as the potential adsorbent for dyes and metal removal from the wastewater: A review. Nanotechnol. Monit. Manag.14: 100339-100343.
  210. Ramazani A., Oveisi M., Sheikhi M., Gouranlou F., (2018), Natural polymers as environmental friendly adsorbents for organic pollutants such as dyes removal from colored wastewater. Org. Chem. 22: 1297-1306.
  211. Wu L. K., Wu H., Zhang H. B., Cao H. Z., Hou G. Y., Tang, Y. P., Zheng G. Q., (2018), Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water.  Chem. Eng. J. 334: 1808-1819.
  212. Villa K., Parmar J., Vilela D., Sánchez S., (2018), Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals. ACS Appl. Mater. Interf. 10: 20478-20486.
  213. Al Sharabati M., Abokwiek R., Al-Othman A., Tawalbeh M., Karaman C., Orooji Y., & Karimi F., (2021), Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review.  Environ. Res. 202: 111694-111699.
  214. Al-Ajji M. A., Al-Ghouti M. A., (2021), Novel insights into the nano adsorption mechanisms of crystal violet using nano-hazelnut shell from aqueous solution.  Water Process. Eng.44: 102354-102358.
  215. Kamaruddin M. A., Aziz H. A., Alrozi R., Jaafar M. H., (2017), Exploring municipal solid waste and landfill management: A systematic approach.  Environ. Res. 11: 123-128.
  216. Micari M., Cipollina A., Tamburini A., Moser M., Bertsch V., Micale G., (2019), Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine. Appl. Energy. 254: 113699-113705.
  217. Tlili I., Alkanhal T. A., (2019), Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. Water Reus. Desalin. 9: 232-248.
  218. Kavitha J., Rajalakshmi M., Phani A. R., Padaki M., (2019), Pretreatment processes for seawater reverse osmosis desalination systems: A review.  Water Process. Eng. 32: 100926-100931.
  219. Abdel-Fatah M. A., (2018), Nanofiltration systems and applications in wastewater treatment.  Shams. Eng. J. 9: 3077-3092.
  220. Liao Y., Loh C. H., Tian M., Wang R., Fane A. G., (2018), Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications.  Polym. Sci. 77: 69-94.
  221. Oatley-Radcliffe D. L., Walters M., Ainscough T. J., Williams P. M., Mohammad A. W., Hilal N., (2017), Nanofiltration membranes and processes: A review of research trends over the past decade.  Water Process. Eng. 19: 164-171.
  222. Zhang J., Weston G., Yang X., Gray S., Duke M., (2020), Removal of herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) from saline industrial wastewater by reverse osmosis and nanofiltration. Desalination. 496: 114691-114696.
  223. Kang X., Cheng Y., Wen Y., Qi J., Li X., (2020), Bio-inspired co-deposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment. Hazard. Mater. 40: 123121-123126.
  224. Qin H., Guo W., Huang X., Gao P., Xiao H., (2020), Preparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatment. Eur. Ceram. Soc. 40: 145-154.
  225. Ghaee A., Shariaty-Niassar M., Barzin J., Matsuura T., Fauzi Ismail A., (2016), Preparation of chitosan/cellulose acetate composite nanofiltration membrane for wastewater treatment.  Water Treat. 57: 14453-14460.
  226. Shukla A. K., Alam J., Alhoshan, M., Dass L. A., Ali F. A. A., Mishra U., Ansari M. A., (2018), Removal of heavy metal ions using a carboxylated graphene oxide-incorporated polyphenylsulfone nanofiltration membrane. Sci. Water Res. Technol. 4: 438-448.
  227. Van der Bruggen B., Mänttäri M., Nyström M., (2008), Drawbacks of applying nanofiltration and how to avoid them: A review.  Purif. Technol. 63: 251-263.
  228. Jain K., Patel A. S., Pardhi V. P., Flora S. J. S., (2021), Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules. 26: 1797-1802.
  229. Katheresan V., Kansedo J., Lau S. Y., (2018), Efficiency of various recent wastewater dye removal methods: A review.  Environ. Chem. Eng. 6: 4676-4697.
  230. Ahmad A., Mohd-Setapar S. H., Chuong C. S., Khatoon A., Wani W. A., Kumar R., Rafatullah M., (2015), Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 5: 30801-30818.
  231. Yagub M. T., Sen T. K., Afroze S., Ang H. M., (2014), Dye and its removal from aqueous solution by adsorption: A review. Colloid Interf. Sci. 209: 172-184.
  232. Hethnawi A., Nassar N. N., Manasrah A. D., Vitale G., (2017), Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chem. Eng. J. 320: 389-404.
  233. Aziz Z. A. A., Mohd-Nasir H., Ahmad A., Peng W. L., Chuo S. C., Khatoon A., Mohamad Ibrahim M. N., (2019), Role of nanotechnology for design and development of cosmeceutical: Application in makeup and skin care. Front. Chem. 7: 739-745.
  234. Lu P. J., Huang, S. C., Chen Y. P., Chiueh L. C., Shih D. Y. C., (2015), Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics.  Food Drug Anal. 23: 587-594.
  235. Cui G., Bi Z., Zhang R., Liu J., Yu X., Li Z., (2019), A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 373: 104-121.
  236. Farahpour M. R., Hamishehkar H., (2021), Effectiveness of topical caraway essential oil loaded into nanostructured lipid carrier as a promising platform for the treatment of infected wounds. Colloids Surf. A Physicochem. Eng. Asp. 610: 125748-125752.
  237. Gharehpapagh A. C., Farahpour M. R., Jafarirad S., (2021), The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant Staphylococcus aureus. J. Biol. Macromol.183: 447-456.
  238. Salata O. V., (2004), Applications of nanoparticles in biology and medicine. Nanobiotechnol. 2: 1-6.
  239. Ghasemzadeh G., Momenpour M., Omidi F., Hosseini M. R., Ahani M., Barzegari A., (2014), Applications of nanomaterials in water treatment and environmental remediation. Front Environ. Sci. Eng. 8: 471-482.
  240. Sadeghi B., (2018), Synthesis and characterization of ultrafine Ag/ZnO nanotetrapods (AZNTP) for environment humidity sensing.  J. Environ. Health Eng. 5: 115-119.
  241. Cramer W., Guiot J., Fader M., Garrabou J., Gattuso J. P., Iglesias A., Xoplaki E., (2018), Climate change and interconnected risks to sustainable development in the Mediterranean. Clim. Change. 8: 972-980.
  242. Vikrant K., Kim K. H., (2019), Nanomaterials for the adsorptive treatment of Hg (II) ions from water. Chem. Eng. J. 358: 264-282.
  243. Lu F., Astruc D., (2020), Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 408: 213180-213186.
  244. Puri N., Gupta A., Mishra A., (2021), Recent advances on nano-adsorbents and nanomembranes for the remediation of waterClean. Prod. 322: 129051-129056.
  245. Lu F., Astruc D., (2020), Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Chem. Rev. 408: 213180-213186.
  246. Maksoud M. A., Elgarahy A. M., Farrell C., Ala'a H., Rooney D. W., Osman A. I., (2020), Insight on water remediation application using magnetic nanomaterials and biosorbents. Chem. Rev. 403: 213096-213101.