Augmentation of functional properties on Cotton Fabric using milled TiO2 nanopowders

Document Type : Reasearch Paper

Authors

Department of Physics, Sri GVG Visalakshi College for Women, S. V Mills Post, Udumalpet, Tamilnadu India-642128.

Abstract

The effect of milling process on TiO2 nanopowders and functional properties of TiO2 coated cotton fabric was investigated. The XRD analysis reveals that the milled TiO2 nanopowders reduce its size in Nano scale when milling time increases. SEM analysis reveals that the milled TiO2 powder shows a seed-like structure. FTIR spectra show the presence of the functional groups in milled TiO2 nanopowders and TiO2 coated cotton fabric. The hydrophobic test exhibits that the 100 and 125 hours of milled TiO2 nanopowders coated cotton fabric has 70% water repellency.  The bursting strength (shearing stress) of TiO2 coated cotton fabric also indicates an appreciable value of about 503.6 Kpa. TiO2 nano finishing of cotton fabric can eliminate up to 99.99% of Staphylococcus aureus and Klebsiella pneumonia bacterial strains, which would be suitable for sports wears and surgical clothes.

Keywords


  1.  Fazal-ur-Rehman M., Qayyum I., (2020), Biomedical scope of gold nanoparticles in medical sciences; An advancement in cancer therapy. Medic. Chem. Sci. 3: 399-407.
  2. Kathirvelu, Louis D Souza., Bhaarathi Dh., (2009), UV protection finishing of textiles using ZnO nanoparticles. Ind. J. Fibre Text Res. 34: 267-273.
  3. Derakhshan-Nejad A., Cheraghi M., Rangkooy H. A., Jalillzadeh Yengejeh R., (2021), Photo catalytic activity of TiO2 immobilized on a 13X Zeolite based in removal of ethyl benzene vapors under visible light irradiation. Methodol. 5: 50-58.
  4. Khameneh Asl Sh., Mohammadi B., Khataee A. R., (2020), Optimization of anodizing parameters on photo decolorization of textile dye solution using N doped titanium nano tubes with response surface methodology. Methodol. 4: 258-275.
  5. Prasad Yadav T., Manohar Yadav R., Pratap Singh D., (2012), Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. Lett. 2: 22-48.
  6. Mahmood S., Atiya A., Abdulrazzak F., Alkaim, Hussein F., (2021), A review on applications of carbon nanotubes (CNTs) in solar cells. J. Medic. Chem. Sci. 4: 225-229.
  7. Zhang W., Zou L., Wang L., (2009), Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Catal. A Gen.371: 1-9.
  8. Ma Y., Zhang J., Tian B., Chen F., Wang L., (2010), Synthesis and characterization of thermally stable Sm, N co-doped TiO2with highly visible light activity. Hazard. Mater. 182: 386-393.
  9. Carey J. J., McKenna K. P., (2019), Screening doping strategies to mitigate electron trapping at anatase TiO2surfaces. J. Phys. Chem. C. 123: 22358-22367.
  10. Daoud W. A., Xin J. H., (2004), Low temperature sol-gel processed photocatalytic titania coating. Solgel Sci. Technol. 29: 25-29.
  11. Antic Z., Krsmanovic M., Nikolic  M. G., Cincovic  M. M.,  Mitric  M.,  Polizzi S., Dramicanin M. D.,  (2012), Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Mat. Chem. Phys.  135: 1064-1069.
  12. Lemine O. M., Louly M. A., Al-Ahmari A. M., (2010), Planetary milling parameters optimization for the production of ZnO nanocrystalline. J. Phys. Sci. 5: 2721–2729.
  13. Nadica D., Abazovic M., Comor M., Dramicanin D., Jovanovic S., Jovan M., (2006), Photoluminescence of anatase and rutile TiO2 J. Phys. Chem. B. 110: 25366–25370.
  14. Mugundan S., Rajamannan G., Viruthagiri N., Shanmugam R., Gobi P., (2015), Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. Nanosci. 5: 449–456.
  15. Dilip Kumar B., Devangam Vishnu P. A., Palukuru P. S., (2020), Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation. Int. J. Nano Dimens. 11: 303-311.
  16. Balraj Krishnan T., Apurba S.,  Kumar A., (2020), Surface modification of cotton fabric using TiO2  nanoparticles for self-cleaning, Oil–Water separation, antistain, anti-water absorption, and antibacterial Properties. ACS Omega. 5: 7850-7860.
  17. Ertugrul S., Ucar N., (2000), Predicting bursting strength of cotton plain knitted fabrics using intelligent techniques. Res. J. 70: 845- 851.
  18. Subhranshu S. S., Jeyaraman P., Vinita V., (2010), Sono-chemical coating of Ag-TiO2 nanoparticles on textile fabrics for stain repellency and self-cleaning-the indian scenario: A review. Minerals Mater. Characteriz. Eng. 9: 519-525.
  19. Sarkar R. K., Purushottam D. E., Chauhan P. D., (2003), Bacteria- resist finish on cotton fabrics using natural herbal extracts. J. Fibre Textile Res. 28: 322-331.