Green synthesis of magnetite nanoparticles using Catha edulis plant leaf extract for removal of hexavalent Chromium from aqueous solution

Document Type : Reasearch Paper

Authors

Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia.

Abstract

In this study, we report the synthesis of magnetite (Fe3O4) nanoparticles using Catha Edulis plant leaf extract as bioreducing agents and investigation of its efficiency as an adsorbent for hexavalent chromium Cr(VI) removal from aqueous solutions. The synthesized NPs were characterized using X-ray diffraction (XRD) spectroscopy, Fourier Transforms Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), Ultraviolet-visible (UV-Vis) spectroscopy, and thermal analysis (TGA-DTA). The XRD result revealed that the phase structure of Fe3O4 NPs was cubic face-centered with crystallite sizes of 12.1 nm, 14 nm, and 9 nm for metal to plant extract ratios of 1 : 1, 2 : 1, and 1 : 2  respectively. UV-Vis DRS analysis confirmed band gap energy of synthesized NPs was in the range 2.0-2.5 eV. Batch adsorption experiments were carried out to evaluate the effect of different parameters such as pH (3-10), adsorbent dose (250mg/L – 1250mg/L), initial concentration of adsorbate (20mg/L - 60mg/L), and contact time (30-120 min) on adsorption efficiency of the NPs at room temperature. The study revealed that the synthesized magnetite adsorbent exhibited  Cr (VI) removal efficiency of about 98.6% at optimized conditions of adsorbent dose of 1000 mg/L, pH 5, initial concentration of Cr(VI) 20 mg/L, and contact time of 60 min. The experimental data were best fitted to the Freundlich adsorption isotherm model (R2 = 0.98341). Moreover, the mechanism of adsorption was in good agreement with pseudo 2nd order kinetics (R2 = 0.98188). The results suggested that the biosynthesized Fe3O4 nanoparticles have the potential for the removal of hexavalent chromium ions from aqueous solutions.

Keywords


  1.  Rajput S., Pittman C. U., Mohan D., (2016), Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Colloid Interf. Sci. 468: 334–346.
  2. Dhal B., Abhilash A., Pandey B. D., (2018), Mechanism elucidation and adsorbent characterization for removal of Cr(VI) by native fungal adsorbent. Environ. Res. 28: 289–297.
  3. Weijiang Z., Yace Z., Yuvaraja G., Jiao X., (2017), Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan schiff’s base@Fe3O4 (CSB@Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies. J. Biol. Macromol. 105: 422-430.
  4. Jadidi M., Etesami N., Esfahany M. N., (2017), Adsorption and desorption processes of chromium ions using magnetic Iron Oxide nanoparticles and their relevant mechanism. J. Chem. Eng. 14: 31–40.
  5. Michael S., Solomon K., Omoniyi A., (2020), Short review article plant-mediated Iron nanoparticles and their applications as adsorbents for water treatment – A review. Chem. Rev. 2: 103–113.
  6. El-Kassas H. Y., Aly-Eldeen M. A., Gharib S. M., (2016), Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanol. Sin. 35: 89–98.
  7. Arjaghi S. K., Alasl M. K., Sajjadi N., Fataei E., Rajaei G. E., (2021), Green synthesis of Iron Oxide nanoparticles by RS lichen extract and its application in removing heavy metals of Lead and Cadmium. Trace Elem. Res. 199:763–768.
  8. Bolade O. P., Williams A. B., Benson N. U., (2020), Green synthesis of iron-based nanomaterials for environmental remediation: A review. Nanotechnol. Monit. Manag. 13: 45-48.
  9. Gebremedhn K., Kahsay M. H., Aklilu M., (2019), Green synthesis of CuO nanoparticles using Leaf extract of Catha edulis and its antibacterial activity. J. Pharm. Pharmacol. 7: 6-12.
  10. Altaf S., Zafar R., Zaman W. Q., Ahmad S., Yaqoob K., Syed A., Khan A. J., Bilal M., Arshad M., (2021), Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis. Environ. Saf. 226: 112826.
  11. Khoobi A., Salavati-niasari M., (2019), High performance of electrocatalytic oxidation in direct glucose fuel cell using molybdate nanostructures synthesized by microwave-assisted method. Energy Elsevier. 178: 50–56.
  12. Khoobi A., Shahdost-fard F., Arbabi M., Akbari M., Mirzaei H., (2020), Sonochemical synthesis of ErVO4/MnWO4 heterostructures : Application as a novel nanostructured surface for electrochemical determination of tyrosine in biological samples. Polyhedron. 17: 114302.
  13. Berihun D., (2017), Removal of Chromium from industrial wastewater by adsorption using coffee husk. Mater. Sci. Eng.  6: 1000331.
  14. Singh R., Bhateria R., (2020), Optimization and experimental design of the Pb2+ adsorption process on a nano-Fe3O4-based adsorbent using the response surface methodology. ACS Omega. 5: 28305–28318.
  15. Pandey P. K., Sharma S. K., Sambi S. S., (2010), Kinetics and equilibrium study of chromium adsorption on zeolite NaX. J. Environ. Sci. Technol. 7: 395–404.
  16. Andualem W. W., Sabir F. K., Mohammed E. T., Belay H. H., Gonfa B. A., (2020), Synthesis of copper oxide nanoparticles using plant leaf extract of catha edulis and its antibacterial activity. Nanotechnol. 2020: 1-10.
  17. Dhar P. K., Saha P., Hasan M. K., Amin M. K., Haque M. R., (2021), Green synthesis of magnetite nanoparticles using Lathyrus sativus peel extract and evaluation of their catalytic activity. Eng. Technol. 3: 100117.
  18. Basavaiah K., Kahsay M. H., Rama Devi D., (2018), Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet. Mater. Res. 1: 121–132.
  19. Sadeghi B., Rostami A., Momeni S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Acta Part A: Mol. Biomol. Spec. 134: 326–332.
  20. Yew Y. P., Shameli K., Miyake M., Kuwano N., Bt Ahmad Khairudin N. B., Bt Mohamad S. E., Lee K. X., (2016), Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii). Nanoscale Res. Lett. 11: 276.
  21. Gabal R. A., Shokeir D., Orabi A., (2022), Cytotoxicity and hemostatic one step green synthesis of Iron nanoparticles coated with green tea for biomedical application. Trends Sci.19: 3.
  22. Jadidi M., Etesami N., Esfahany M. N., (2017), Adsorption and desorption processes of chromium ions using magnetic Iron Oxide nanoparticles and their relevant mechanism. J. Chem. Eng.14: 31–40.
  23. Sadeghi B., Gholamhoseinpoor F., (2015), A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Acta Part A: Mol. Biomol. Spect. 134: 310–315.
  24. Sadeghi B., Mohammadzadeh M., Babakhani B., (2015), Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. Photochem. Photobiol: Biology. 148: 101–106.
  25. Han C., Zhu D., Wu H., Li Y., Cheng L., Hu K., (2016), TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties. Magn. Magn. Mat. 408: 213–216.
  26. Gabal R. A., Shokeir D., Orabi A., (2022), Cytotoxicity and hemostatic one step green synthesis of Iron nanoparticles coated with green tea for biomedical application. Trends Sci. 19: 2062-2066.
  27. Singh M., Goyal M., Devlal K., (2018), Size and shape effects on the band gap of semiconductor compound nanomaterials. Taibah Univ. Sci. 12: 470–475.
  28. Yusefi M., Shameli K., Hedayatnasab Z., Yeang S., (2021), Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment. Chem. Intermed. 47: 1789–1808.
  29. Geneti S. T., Mekonnen G. A., Murthy H. C. A., Mohammed E. T., Ravikumar C. R., Gonfa B. A., Sabir F. K., (2022), Biogenic synthesis of magnetite nanoparticles using leaf extract of Thymus schimperi and their application for monocomponent removal of chromium and mercury ions from aqueous solution. Nanomater. 2022: 1-15.
  30. Nameni M., Alavi Moghadam M. R., Arami M., (2008), Adsorption of hexavalent chromium from aqueous solutions by wheat bran. J. Environ. Sci. Technol. 5: 161–168.
  31. Edris J., Gupta N., Zereffa E. A., (2019), Synthesis of silica supported Iron Oxide nanoparticles for hexavalent Chromium removal from aqueous solutions. J. Sci. Sustain. Dev. 6: 81–93.
  32. Saravanan A., Kumar P. S., Govarthanan M., George C. S., Vaishnavi S., Moulishwaran B., Kumar S. P., Jeevanantham S., Yaashikaa P., (2021), Adsorption characteristics of magnetic nanoparticles coated mixed fungal biomass for toxic Cr(VI) ions in aquatic environment. Chemosphere. 267: 129226.
  33. Kumar R., Bishnoi N. R., Garima A., Bishnoi K., (2008), Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. 135: 202–208.
  34. Ataabadi M., Hoodaji M., Tahmourespour A., Kalbasi M., Abdouss M., (2014), Optimization of factors affecting hexavalent chromium removal from simulated electroplating wastewater by synthesized magnetite nanoparticles. Monit. Assess. 187: 4165, PMID: 25471623.
  35. Marcu C., Varodi C., Balla A., (2021), Adsorption kinetics of chromium (VI) from aqueous solution using an anion exchange resin solution using an anion exchange resin. Lett. 54: 140-149.
  36. Hong J., Xie J., Mirshahghassemi S., Lead J., (2020), Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Adv. 10: 3266–3276.
  37. Ayawei N., Ebelegi A. N., Wankasi D., (2017), Modelling and interpretation of adsorption isotherms. Chem. 2017: 1–11.
  38. Zubair Y. O., Fuchida S., Tokoro C., (2020), Insight into the mechanism of arsenic(III/V) uptake on mesoporous zerovalent Iron–magnetite nanocomposites: Adsorption and microscopic studies. ACS Appl. Mater. Interf. 12: 49755–49767.