Synthesis and characterization of Iron Oxide, rare earth Erbium Oxide, and Erbium Oxide blended Iron Oxide nanocomposites for biomedical activity application

Document Type : Reasearch Paper

Authors

1 Department of Physics, Arignar Anna Govt. Arts College, Cheyyar-604407, (Affiliated: Thiruvalluvar University, Vellore), Tamil Nadu (TN), India.

2 Department of Physics, University College of Engineering-Arni, (A constituent college of Anna University Chennai), Arni–632326.

3 Department of Physics, VIT University, Vellore-632014, TN, India.

4 Department of Physics, Thiruvalluvar University, TVUCAS Campus, Thennangur, 604408, Tamil Nadu, India.

Abstract

In this report, we intend to synthesize iron oxide (Fe2O3), erbium oxide (Er2O3), and a composite of erbium oxide/iron oxide (Er2O3/Fe2O3) nanoparticles (NPs) by a microwave irradiation technique. After the synthesis, we explore the various physicochemical properties of the sample with the help of various systematic characterization techniques. First, the prepared sample has been subjected to XRD for determining the crystal structure. Then, we confirm the functional groups of the sample with the help of FTIR. Further, we analyze the absorbance and the band gap with a UV-Vis spectrometer. Besides, we also investigate the microbial studies, namely, the anti-bacterial and the anti-fungal. Finally, we also analyze the response of human breast cancer cells when they are exposed to iron oxide (Fe2O3), erbium oxide (Er2O3), and a composite of erbium oxide/iron oxide (Er2O3/Fe2O3) nanoparticles (NPs) with MDA MB 231 by MTT assay.

Keywords


  1. Siegel R. L., Miller K. D., Fuchs H. E., Jemal A. (2021), Cancer Statistics. CA Cancer J. Clin. 71: 7–33.
  2. Jain S., Hirst D. G., O'Sullivan J. M., (2012), Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 85: 101–113.
  3. Heidi H., Prechl J., Jiang H., Zozulya A., Fabry Z., Denes F., Sandor M., (2010), Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells. J. Immunol. Methods. 356: 47-59.
  4. Mohammadi S. Z., Motlagh K., Jahani S., Yousefi M., (2012), Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. Int. J. NanoSci. Nanotechnol. 8: 87-92.
  5. Sathyaseelan B., Senthilnathan K., Alagesan T., Jayavel R., Sivakumar K., (2010), A study on structural and optical properties of Mn-and Co-doped SnO2 nanocrystallites. Mater. Chem. Phys. 124: 1046-1050.
  6. Krishnakumar T., Jayaprakash R., Parthibavarman M., Phani A. R., Singh V. N., Mehta B. R., (2009), Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mater. Lett. 63: 896-898.
  7. Davoodnia A., Rahimizadeh M., Atapour‐Mashhad H., Tavakoli‐Hoseini N., (2009), Investigation into the reaction of 2‐amino‐4, 5‐dimethylthiophene‐3‐carboxamide with iso (and isothio) cyanates under microwave irradiation. Heteroatom Chem.: An Int. J. Main Group Elem. 20: 346-349.
  8. Parida K. M., Parija S., (2006), Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Solar Energy. 80: 1048-1054.
  9. Mirzaei H., Davoodnia A., (2012), Microwave-assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chin. J. Catal. 33: 1502-1507.
  10. Devendra K., Himani Sh., Neelam Sh., (2022), Antibacterial and morphological studies of plant-mediated synthesized CuO nanoparticles using Azadirachta indica (neem) leaf extract. Int. J. Nano Dimens. 13: 197-204.
  11. Preethi S., Zhang X., Hao G., Joly A. G., Singh S., Hossu M., Sun X., Chen W., (2019), Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting. Cancer Nanotechnol. 1: 19-24.
  12. Maryam M., Anthony D. M., Hoskins C., (2014), The use of iron oxide nanoparticles for pancreatic cancer therapy. J. Nanomed. Res. 1: 00004.
  13. Kanagesan S. M., Hashim S., Tamilselvan N. B., Alitheen I., Hajalilou A., Ahsanul K., (2013), Synthesis, characterization, and cytotoxicity of iron oxide nanoparticles. Adv. Mater. Sci. Eng. 2013: Article ID 710432.
  14. Shameera Begum B. A., Farida B. I., Hemalatha S., (2021), Cancer nanomedicine: A review on approaches and applications towards targeted drug delivery. Int. J. Nano Dimens. 12: 310-327.
  15. Sasikala C., Suresh G., Durairaj N., Baskaran I., Sathyaseelan B., Kumar M., Senthilnathan K., Manikandand E., (2020), Influences of Ti4+ ion on dielectric property in perovskite structure of La Ferrite (LaFe1-X TiXO3). J. Alloys and Comp. 845: 155040-155045.
  16. Sasikala C., Suresh G., Durairaj N., Baskaran I., Sathyaseelan B., Manikandan E., Srinivasan R., Moodley M. K., (2019), Chemical, morphological, structural, optical, and magnetic properties of transition metal titanium (Ti)-doped LaFeO3 nanoparticles. J. Superconduc. Novel Magnetism. 32: 1791-1797.
  17. Shalini C., Upadhyay M. K., (2012), Fruit-based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Recent Res. Sci. Technol. 4: 41-44.
  18. Sasikala C., Durairaj N., Baskaran I., Sathyaseelan B., Henini M., Manikandan E., (2017), Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical structural and magnetic properties. J. Alloys and Comp. 712: 870-877.
  19. Zhihong J., Wu S., (2004), Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater. Lett. 58: 3637-3640.
  20. Xu Y. Y., Zhao D., Zhang X. J., Jin W. T., Kashkarov P., Zhang H., (2009), Synthesis and characterization of single-crystalline α-Fe2O3 nano leaves. Physica E: Low-dimens. Systems and Nanostruc. 41: 806-811.
  21. Abdelmajid L., Dkhil B., Gadri A., Ammar S., (2017), Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Phys. 7: 3007-3015.
  22. Stjepko K., Ristić M., Petrović Z., Kratofil Krehula L., Mitar I., Musić S., (2019), Effects of Cu doping on the microstructural, thermal, optical, and photocatalytic properties of α-FeOOH and α-Fe2O3 1D nanoparticles. J. Alloys and Comp. 802: 290-300.
  23. Killivalavan G., Prabakar A. C., Babu Naidu K. C., Sathyaseelan B., Rameshkumar G., Sivakumar D., Senthilnathan K., Baskaran I., Manikandan E., Ramakrishna Rao B., (2020), Synthesis and characterization of pure and Cu doped CeO2 nanoparticles: photocatalytic and antibacterial activities evaluation. Biointerf. Res. Appl. Chem. 10: 5306–5311.
  24. Lionel V., Beermann N., Lindquist S., Hagfeldt A., (2001), Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron (III) oxides. Chem. Mater. 13: 233-235.
  25. Jia D., Lu L., Yen W. M., (2002), Erbium energy levels relative to the band gap of gadolinium oxide. Optics Communic. 212: 97-100.
  26. Biswajit C., Choudhury A., (2013), Room temperature ferromagnetism in defective TiO2 nanoparticles: Role of surface and grain boundary oxygen vacancies. J. Appl. Phys. 114: 203906.
  27. Guofeng W., Mu Q., Chen T., Wang Y., (2010), Synthesis, characterization, and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. J. Alloys Comp. 493: 202-207.
  28. Abdelmajid L., Dkhil B., Gadri A., Ammar S., (2017), Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Res. Phys. 7: 3007-3015.
  29. Lian-Ying Z., Zhu J., (2003), Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polym. 54: 527-530.
  30. Saptarshi C., Bandyopadhyay A., Sarkar K., (2011), Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J. Nanobiotechnol. 9: 34-39.
  31. Jennifer B., Baltrusaitis J., Chen H., Stebounova L., Wu C., Rubasinghege G., Imali A., (2014), Iron oxide nanoparticles induce pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environm. Sci.: Nano 1: 123-132.
  32. Gopinath K., Karthika V., Sundaravadivelan C., Gowri S., Arumugam A., (2015), Myogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruc. Chem. 5: 295-303.
  33. Jong-Whan R., Seok-In H., Hwan-Man P. P., (2006), Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem. 54: 5814-5822.
  34. Parveen S., Wani A. H., Shah M. A., Devi H. S., Bhat M. Y., Koka J. A., (2018), Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathog. 115: 287-292.
  35. Sudheer M., Sharma S. D., Katiyar S. K., (2006), Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther. 5: 296-308.
  36. Shouhu X., Wang F., Lai J. M., Sham K. W., Xiang Y. X., Siu-Fung Lee W., Jimmy C., Christopher C. H. K., Leung K., (2011), Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl. Mater. Interf. 3: 237-244.
  37. Esther A., Textor M., Reimhult E., (2011), Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale. 3: 2819-2843.
  38. Inbathamizh L., Mekalai Ponnu T., Jancy Mary E., (2013), In vitro evaluation of the antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J. Pharm. Res. 6: 32-38.
  39. Krishnaraj C., Jagan E. G., Rajasekar S., Selvakumar P., Kalaichelvan P. T., Mohan N., (2010), Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surf. B: Biointerf. 76: 50-56.
  40. Sathiya P., Ashok Kumar R., Geetha K., (2022), Synthesis and characterization of Gadolinium doped ZnS nanoparticles by chemical precipitation method and its antibacterial activity. Int. J. Nano Dimens. 13: 403-413.