Antibacterial activity of Fe-doped Cd2SnO4 nanoparticles against staphylococcus aureus and salmonella typhi

Document Type : Reasearch Paper

Authors

1 Energy Physics Lab, Department of Physics, V. H. N.Senthikumara Nadar College (Autonomous), Virudhunagar – 626 001, Tamil Nadu, India.

2 PG & Research Department of Zoology, Yadhava College (Autonomous), Madurai – 625 014, Tamil Nadu, India.

3 Energy Physics Lab, Department of Physics, V.H.N.Senthikumara Nadar College (Autonomous), Virudhunagar – 626 001, Tamil Nadu, India.

Abstract

Metal oxide nanoparticles are capable of successfully inhibiting bacterial strains. Among the several transition metal atoms, iron (Fe) looks to be a viable dopant since iron oxide has been used a lot in biomedical research due to its biocompatibility and magnetic properties. In order to boost its antibacterial activity and facilitate the entry of nanoparticles into bacterial cells, Cd2SnO4 has been selectively doped with Fe. The chemical precipitation method was used to synthesize Cd2SnO4 and Fe-doped Cd2SnO4 nanoparticles toward antibacterial activity. To the best of our knowledge, there is no report is available on the antibacterial activity of undoped and Fe-doped cadmium stannate nanoparticles against salmonella typhi. The nanoparticles formed are in the cubic phase, according to the XRD results, the size of the crystallites is seen to grow as the increase in Fe concentrations. By using the good diffusion method, the antibacterial properties of synthesized nanoparticles were examined against two human pathogens, including staphylococcus aureus and salmonella typhi. Both undoped and Fe-doped Cd2SnO4 nanoparticles have antibacterial action that inhibits pathogen growth, according to antibacterial tests, which have shown the presence of a zone of clearing surrounding the well.

Keywords


  1. Farnoush A., Zahra J., Mohammad, Masoomeh S., Ghahfarokhi M., Razzaghi A., (2016), Antifungal nanomaterials: Synthesis, properties, and applications. Nanobiomater. Antimicrob. Therapy. 6: 343-383.
  2. Ameer A., Arham S. A., Mohammad O., Mohammad S. K., Sami S. H., Adnan M., (2012), Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. J. Nanomedic. 7: 6003-6008.
  3. Holland T. L., Arnold C., Fowler V. C., (2014), Clinical management of staphylococcus aureus bacteremia: A Review. 312: 1330–1341.
  4. Nancy J., Malu S., Nisha J. T., (2018), Characterization and anti–bacterial activities of SnO2nanoparticles using biological molecule. IOP Conf. Ser.: Mater. Sci. Eng. 360: 012007.
  5. Nancy J., Malu S., Nisha J. T., (2017), Synthesis, characterization and anti - bacterial activities of pure an Ag-doped SnO2 Mater. Today: Proceed. 4: 4351–4357.
  6. Bhattacharjee A., Ahmaruzzaman M., (2015), A novel and green process for the production of SnO2 quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. J. Colloid and Interf. Sci. 448: 130-139.
  7. Sarika A. K., Parvez A. S., Pradip P., Satishchandra B. O., (2012), Nanostructured Cd2SnO4 as an energy harvesting photoanode for solar water splitting. Energy Environ. Sci. 2: 5681-5685.
  8. Wei W., Ying X., Xinyu Z., Bing L., Minhua C., (2014), Synthesis of Cd2SnO4–SnO2 hybrid micro-cubes with enhanced electrochemical performance for lithium-ion batteries. Eng. Comm. 16: 922-929.
  9. Dinesh S., Anandan M., Premkumar V. K., Barathan S., Sivakumar G., Anandhan N., (2014), Photocatalytic and electrochemical performance of hydrothermally synthesized cubic Cd2SnO4 J. Mater. Sci. Eng. B. 214: 37-45.
  10. Jayachandran M., Subramanian B., Mary J. C., Lakshmanan A. S., (1994), Cd2SnO4-its sol-gel preparation and materials properties. Bull. Mater. Sci. 17: 989-997.
  11. Xianli H., Jun L., Zhaosheng L., Zhigang Z., (2010), Electronic structure and visible-light-driven photocatalytic performance of Cd2SnO4. Alloys Compd. 507: 341-344.
  12. Sawant V. S., Shinde S. S., Deokate R. J., Bhosale C. H., Chougule B. K., Rajpure K. Y., (2009), Effect of calcining temperature on electrical and dielectric properties of cadmium stannate panel. Surf. Sci. 255: 6675-6678.
  13. Pabchanda S., Putpan J., Laopaiboon R., (2009), Preparation and Properties of Fe-doped SnO2 Thin Films by Spray Pyrolysis Technique. UBUSCI-Journal - Historical Articles. 21-28.
  14. Saleha S. A., Ibrahim A. A., Mohamed S. H., (2016), Structural and optical properties of nanostructured Fe-doped SnO2. Acta Physica Polonica A. 129: 1220 -
  15. Osorio‑R. D., Torres D. G., Márquez‑M. J., Castanedo P. R., Aguilar‑Frutis M. A., Zelaya Á. O., (2018), Cd2SnO4 thin films obtained by spray pyrolysis using RTA post deposition treatments. Mater. Sci: Mater. Electronics. 29: 20470-20475.
  16. Deshraj M., Bharti S., Abhishek A., Mukhtiyar S.,Bhatnagar C., (2020), Phase dependent selectivity shifting behavior of Cd2SnO4 nanoparticles based gas sensor towards volatile organic compounds (VOC) at low operating temperature. J. Alloys and Comp. 820: 153117.
  17. Preethi ,  Senthil K.,  Pachamuthu M. P.,  Balakrishnaraja R.,  Sundaravel B.,  Geetha N., Stefano B., (2022), Effect of Fe doping on photocatalytic dye-degradation and antibacterial activity of SnO2 nanoparticles. Hind. Adsorp. Sci. Tech. Article ID 9334079.
  18. Chikhale L. P., Shaikh F. I., Mulla I. S., Suryavanshi Chikhale S., (2017),  Synthesis, structural and optical properties of Fe-doped nanocrystalline SnO2J. Mater. Sci: Mater. Electron. 28:12063-12069.
  19. Sakthivel P., Murugan R., Asaithambi S., Karuppaiah M., Vijayaprasath G., Rajendran S., Hayakawa Y., Ravia G., (2018), Studies on optoelectronic properties of magnetron sputtered cadmium stannate (Cd2SnO4) thin film as alternate TCO material for solar cell applications. Ceramic Int. 44: 2529-2538.
  20. Balamurugan S., Balu A. R., Usharani K., Suganya M., Anitha S., Prabha D., Ilangovan S., (2016), Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pacific Sci. Rev. A: Nat. Sci. Eng. 18: 228-232.
  21. Djurišić A. B., Leung Y. H., Tam K. H., Ding L., Ge W. K., Chen H. Y., Gwo S., (2006), Green, yellow and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Phys. Lett. 88:103107-103113.
  22. Zhiren Q., Wong K. S., Mingmei W., Wenjiao L., Huifang X., (2004), Microcavity lasing behavior of oriented hexagonal ZnO nano whiskers grown by hydrothermal oxidation. Phys. Lett. 84: 2739 -2741.
  23. Ameer Baig A. B., Vadamalar R., Ramya V., (2021), Synthesis and investigation of Fe doped SnO2 nanoparticles for improved photocatalytic activity under visible light and antibacterial performances. Tech. 36: 623-628.
  24. Hilal K., Şeyma K., Ali O. A., Hatem A., (2015), Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method. Sci. Semicon. Proc. 38: 404-412.
  25. Karthik K., Dhanuskodi S., Gobinath C., Prabukumar S., Sivaramakrishnan S., (2019), Multifunctional properties of CdO nanostructures synthesised through the microwave-assisted hydrothermal method. Res. Innov.23: 310-318.
  26. Kaviyarasu K., Manikandan E., Paulraj P., Mohamed S. B., Kennedy J., (2014), One dimensional well-aligned CdO nanocrystal by solvothermal method. Alloys and Comp. 593: 67 -70.
  27. Saad M. Y., (2021), Engineering of visible light photocatalytic activity in SnO2 nanoparticles: Cu2+integrated Li+, Y3+ or Zr4+ dopants optical materials. 116: 111077.
  28. Srinivas K., Manjunath Raoan S., Venugopal Reddy P., (2011), Structural, electronic and magnetic properties of S95Ni0.05O2 nanorods. Nanoscale. 3: 642-653.
  29. Ishpal R., (2015), Facial synthesis of hexagonal metal oxide nanoparticles for low temperature ammonia gas sensing applications. RSC Adv. 5: 4135-4142.
  30. Shanmugam, SathyaT., ViruthagiriG., KalyanasundaramC., GobiR., RagupathyS., (2016), Photocatalytic degradation of brilliant green using undoped and Zn doped SnO2 nanoparticles under sunlight irradiation. Appl. Surf. Sci. 360: 283-290.
  31. Fanbin M., Wei W., Xiangnan C., Xiaoling X., Man J., Lu J., Yong W., Zuowan Z., (2016), Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Phys. 18: 2510-2516.
  32. Pan P., Ping W., Zhengyang C., Jiajia Z., Yu H., Jingcheng X., Xianying W., (2022), Worm-like porous and defect-structured cadmium stannate photoanodes for enhanced solar water oxidation. Nanoscale Adv. 4: 1227-1232.