Phytochemical prospecting, green synthesis of Silver nanoparticles from Euphorbia helioscopia and its antibacterial activity

Document Type : Reasearch Paper

Authors

1 Department of Biotechnology, Paavai Engineering College, Paavai Institutions, Namakkal, Tamilnadu, India.

2 Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu, India.

3 Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem,

Abstract

Euphorbia helioscopia, a traditional medicinal herb, possesses various pharmaceutical applications for human diseases. In the present study, the ethanol and hexane extracts of E. helioscopia leaves were subjected to phytochemical screening to identify the presence of secondary metabolites. The concentrations of alkaloids, phenols, and flavonoids were determined quantitatively to evaluate the medicinal properties of the plant extracts. The ethanolic extract showed a higher yield of various secondary metabolites, specifically, phenol showed a high degree of precipitation. Silver nanoparticles (AgNPs) were then green synthesized from the leaf extract and characterized by UV–Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscope (SEM). The presence of elemental silver is confirmed by the sharp peaks in the UV-Visible at 442 nm. The FTIR spectrum showed the presence of various functional groups from the plant extract that fabricated and activated the AgNPs. The synthesized NPs were found to be spherical with slight aggregation in the SEM micrograph. The crude plant extracts and AgNPs were compared for antibacterial activity at various concentrations. AgNPs exhibited higher inhibitory activity against selected Gram-positive and Gram-negative pathogens than the crude extracts. The enhanced activity of AgNPs may be attributed to the phenolic content of the plant extracts. Hence, the present study confirms that E. helioscopia leaves have potential antimicrobial activity and also act as an efficient source for AgNPs with remarkable pharmacological properties that can be further evaluated to develop them as a promising drug candidate.

Keywords


  1. Mohammad S., Mohammadpour G., Savadkoohi P., (2018), Efficacy of aqueous and methanol extracts of Euphorbia helioscopia for potential antibacterial activity. Plant Pathol. Microbiol. 9: 2-8.
  2. Edeoga H. O., Okwu D. E., Mbaebie B. O., (2005), Phytochemical constituents of some nigerian medicinal plants. J. Biotechnol. 4: 685-688.
  3. Arunkumar S., Muthuselvam M., (2009), Analysis of phytochemical constituents and antimicrobial activities of Aloe vera against clinical pathogens. World J. Agric. Sci. 5: 572-576.
  4. Rekka R., Kumar S. S., (2014), Ethnobotanical notes on wild edible plants used by malayali tribals of yercaud hills, eastern ghats, salem district, tamil nadu. J. Herb. Med. 2: 39-42.
  5. Lu Z. Q., Guan S. H., Li X. N., Chen G. T., Zhang J. Q., Huang H. L., Liu X., Guo D. A., (2008), Cytotoxic diterpenoids from Euphorbia helioscopia. Nat. Prod. 71: 873-876.
  6. Kamba A., Hassan L. G., (2010), Phytochemical screening and antimicrobial activities of Euphorbia balsamifera leaves, stems and root against some pathogenic microorganisms. J. Pharmacy Pharmacol. 4: 645-652.
  7. Aslam M. S., Choudhary B. A., Uzair M., Ijaz A. S., Roy S. D., (2014), A review on phytochemical constituents and pharmacological activities of Euphorbia helioscopia. Res. J. Pharm. Sci. 1: 86-95.
  8. Zhang W., Guo Y. W., (2006), Chemical studies on the constituents of the chinese medicinal herb Euphorbia helioscopia Chem. Pharm. Bull. 54: 1037-1039.
  9. Choi Y., Ho N. H., Tung C. H., (2007), Sensing phosphatase activity by using gold nanoparticles. Chem. Int. Ed. 46: 707-709.
  10. Yoosaf K., Ipe B., Suresh C. H., Thomas K. G., (2007), Silver nanoparticles: synthesis and size control by electron irradiation. J. Phys. Chem. C. 1287: 111-115.
  11. Vilchis-Nestor A. R., Sánchez-Mendieta V., Camacho-López M. A., Gómez-Espinosa R. M., Camacho-López M. A., Arenas-Alatorre J. A., (2008), Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis Mater. Lett. 62: 3103-3105.
  12. Ghotekar S., Savale A., Pansambal S., (2018), Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities.  Water and Environment. Nanotech. 3: 95-105.
  13. Ghotekar S., Pansambal S., Pawar S. P., Pagar T., Oza R., Bangale, S., (2019), Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract.  N. Appl. Sci.1: 1-12.
  14. Barwant M., Ugale Y., Ghotekar S., Basnet P., Nguyen V. H., Pansambal S., Ananda Murthy H. C., Sillanpaa M., Bilal M., Oza R., Karande V., (2022), Eco-friendly synthesis and characterizations of Ag/AgO/Ag2O nanoparticles using leaf extracts of Solanum elaeagnifolium for antioxidant, anticancer, and DNA cleavage activities. Chemical Papers. 76: 1-13.
  15. Kashid Y., Ghotekar S., Bilal M., Pansambal S., Oza R., Varma R. S., Nguyen V. H., Murthy H. A., Mane D., (2022), Bio-inspired sustainable synthesis of silver chloride nanoparticles and their prominent applications.  Indian Chem. Soc. 99: 100335.
  16. Ghotekar S., Pagar K., Pansambal S., Murthy H. A., Oza R., (2021), Biosynthesis of silver sulfide nanoparticle and its applications. In Handbook of greener synthesis of nanomaterials and compounds, 191-200, Elsevier.
  17. Joerger R., Klaus T., Granqvist C. G., (2000), Biologically produced silver–carbon composite materials for optically functional thin‐film coatings. Mater. 12: 407-409.
  18. Shankar S. S., Ahmad A., Pasricha R., Sastry M., (2003), Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Mater. Chem. 13: 1822-1826
  19. Oliveira M. M., Ugarte D., Zanchet D., Zarbin A. J., (2005), Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Colloid Interf. Sci. 292: 429-435.
  20. Cuong H. N., Pansambal S., Ghotekar S., Oza R., Hai N. T. T., Viet N. M. Nguyen V. H., (2022), New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review.  Res.203: 111858.
  21. Ghotekar S., (2019), A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem.3: 187-200.
  22. Korde P., Ghotekar S., Pagar T., Pansambal S., Oza R., Mane D., (2020), Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications.  Chem. Rev. 2: 157-168.
  23. Pansambal S., Oza R., Borgave S., Chauhan A., Bardapurkar P., Vyas S., Ghotekar S., (2022), Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: A review.  Nanosc. 1-26.
  24. Brain K. R., Turner T. D., (1975), The practical evaluation of phytopharmaceuticals. Bristol: Wright-Scientechnica, 1975 - Botany, Medical - 198 pages.
  25. Evans W. C., (1996), Phenols and phenolic glycosides. Trease and Evans Pharmacognosy, 14th ed. Noida: Gopsons Papers Limited. 218.
  26. Harborne J. B., (1973), A guide to modern techniques of plant analysis. Chapman and Hall.
  27. Zhishen J., Mengcheng T., Jianming W., (1991), The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559.
  28. Siddhuraju P., Becker K., (2003), Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringaoleifera) leaves. J. Agric. Food Chem. 51: 2144-2155.
  29. Bauer A. W., (1966), Antibiotic susceptibility testing by a standardized single disc method. J. Clinpathol. 45: 149-158.
  30. Saleem U., Hussain K., Ahmad M., Irfan Bukhari N., Malik A., Ahmad B., (2014), Physicochemical and phytochemical analysis of Euphorbia helioscopia (L.). J. Pharm. Sci. 27: 577-585.
  31. Croaker A., King G. J., Pyne J. H., Anoopkumar-Dukie S., Liu L., (2016), Sanguinaria canadensis: traditional medicine, phytochemical composition, biological activities and current uses. J. Mol. Sci. 17: 1414-1420.
  32. Arun K., Ajudhia Nath K., Hayat M. M., (2016), Phytochemical investigation and standardization of aerial parts of Euphorbia Helioscopia World J. Pharm. Sci. 4: 434-439.
  33. Tungmunnithum D., Thongboonyou A., Pholboon A., Yangsabai A., (2018), Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 5: 93-98.
  34. Huyut Z., Beydemir Ş., Gülçin İ., (2017), Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Res. Int. Article ID 7616791 .
  35. Lalitha A., Subbaiya R., Ponmurugan P., (2013), Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. J. Curr. Microbiol. App. Sci. 2: 228-35.
  36. Nirmala C., Sridevi M., (2021), Characterization, antimicrobial and antioxidant evaluation of biofabricated silver nanoparticles from Endophytic Pantoea anthophila Inorg. Organomet. Polym. Mater.31: 3711-3725.
  37. Sarwer Q., Amjad M. S., Mehmood A., Binish Z., Mustafa G., Farooq A., Qaseem M. F., Abasi F., Pérez de la Lastra J. M., (2022), Green synthesis and characterization of Silver nanoparticles using Myrsine africana leaf extract for their antibacterial, antioxidant and phytotoxic activities. Molecules. 27: 7612-7616.
  38. Balciunaitiene A., Puzeryte V., Radenkovs V., Krasnova I., Memvanga P. B., Viskelis P., Streimikyte P., Viskelis J., (2022), Sustainable–green synthesis of Silver nanoparticles using aqueous Hyssopus officinalis and Calendula officinalis extracts and their antioxidant and antibacterial activities. Molecules. 27: 7700-7706.
  39. Nasrollahzadeh M., Sajadi S. M., Babaei F., Maham M., (2015), Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. Colloid Interface Sci. 450: 374-80.
  40. Kirbag S., Erecevit P., Zengin F., Guvenc A. N., (2013), Antimicrobial activities of some Euphorbia Afr. J. Tradit. Complement. Altern. Med. 10: 305-309.
  41. Elumalai E. K., Prasad T. N., Kambala V., Nagajyothi P. C., David E., (2010), Green synthesis of silver nanoparticle using Euphorbia hirta and their antifungal activities. Arch Appl. Sci. Res. 2: 76-81.
  42. Sadeghi B., Jamali M., Kia Sh., Amini Nia A., Ghafari S., (2010), Synthesis and characterization of silver nanoparticles for antibacterial activity.  J. Nano Dimens.1: 119-124.
  43. Sadeghi B., Rostami A., Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistaciaatlanticaand its antibacterial activity.  Acta Part A: Mole. Biomole. Spectros.134: 326-332.