[1] Coelho F. C., Squitti R., Ventriglia M., Cerchiaro G., Daher J. P., Rocha J. G., Moonen A. C., (2020), Agricultural use of copper and its link to Alzheimer’s disease. Biomolecules. 10: 897-902.
[2] Shajari D., Bahari A., Gill P., Mohseni M., (2017), Synthesis and tuning of gold nano rods with surface plasmon resonance. Opt. Mater. 64: 376-383.
[3] Amjad R., Mubeen B., Ali S. S., Imam S. S., Alshehri S., Ghoneim M. M., Kazmi I., (2021), Green synthesis and characterization of copper nanoparticles using Fortunella margarita leaves. Polymers. 13: 1-12.
[4] Hakimyfard A., Khademinia S., (2022), Hirshfeld surface analysis of solid-state synthesized NiFe2O4 nanocomposite and application of it for photocatalytic degradation of Water pollutant dye. Int. J. Nano Dimens. 13: 155-167.
[5] Dadashi H., Hajinasiri R., (2020), Biosynthesis of Cu and CuO nanoparticles using aqueous leaves extract of Sambucus nigra L. Int. J. Nano Dimens. 11: 405-411.
[6] Ramavathu L. N., Harapanahalli S. R., Pernapati N., Tumma B., (2021), Synthesis and characterization of Nickel Metavanadate. Int. J. Nano Dimens. 12: 411-421.
[7] Verma M., Mitan M., Kim H., Vaya D., (2021), Efficient photocatalytic degradation of Malachite green dye using facilely synthesized cobalt oxide nanomaterials using citric acid and oleic acid. J. Phys. Chem. Solids, 155: 110125-110129.
[8] Perez-Alvarez M., Cadenas-Pliego G., Perez-Camacho O., Comparan-Padilla V. E., Cabello-Alvarado C. J., Saucedo-Salazar E., (2021), Green synthesis of copper nanoparticles using cotton. Polym. 13: 1-11.
[9] Soleimani-Gorgani A., Alborz R., (2020), Green synthesis of nanoparticles for using as antibacterial materials. J. Biosaf. 13: 23-44.
[10] Shajari D., Bahari A., Gill P., (2018), Fast and simple detection of bovine serum albumin concentration by studying its interaction with gold nanorods. Colloids and Surf. A: Physicochem. Eng. Aspec. 543: 118-125.
[11] SP V., Udayabhanu U., Lalithamba H. S., (2020), Plant-mediated green synthesis of Ag nanoparticles using Rauvolfia tetraphylla (L) flower extracts: Characterization, biological activities, and screening of the catalytic activity in formylation reaction. Sci. Iranic. 27: 3353-3366.
[12] Morteza-Semnani K., Saeedi M., Mahdavi M. R., Rahimi F., (2007), Antimicrobial effects of methanolic extracts of some species of Stachys and Phlomis. J. Mazand. Univ. Medic. Sci. 17: 57-66.
[13] Amaliyah S., Pangesti D. P., Masruri M., Sabarudin A., Sumitro S. B., (2020), Green synthesis and characterization of Copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon. 6: e04636-e04648.
[14] Naradala J., Allam A., Rao Tumu V., Kumar Rajaboina R., (2022), Antibacterial activity of copper nanoparticles synthesized by Bambusa arundinacea leaves extract. Biointerf. Res. Appl. Chem. 12: 1230-1236.
[15] Asghar M. A., Asghar M. A., (2020), Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide. Inte. J. Biolog. Macromolec. 160: 1168-1176.
[16] Jahan I., Erci F., Cakir-Koc R., Isildak I., (2020), Microwave-irradiated green synthesis of metallic silver and copper nanoparticles using fresh ginger (Zingiber officinale) rhizome extract and evaluation of their antibacterial potentials and cytotoxicity. Inorg. Nano-Metal Chem. 51: 722-732.
[17] Singh J., Dutta T., Kim K. H., Rawat M., Samddar P., Kumar P., (2018), Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16: 1-24.
[18] Akintelu S. A., Folorunso A. S., Folorunso F. A., Oyebamiji A. K., (2020), Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon. 6: 1-12.
[19] Martinelli F., Perrone A., Yosefi S., Papini A., Castiglione S., Guarino F., (2021), Botanical, phytochemical, anti-microbial and pharmaceutical characteristics of hawthorn (Crataegus monogyna jacq.), rosaceae. Molecules. 26: 1-20.
[20] Majd A., Zandi N., Arbabian S., Sharifnia F., (2016), The comparative study of synthetic seed production in some species of Crataegus by meristem culture and somatic embryos. J. Cell and Tissue. 7: 121-129.
[21] Torkashvand M., Akbari Bisheh H., Taghizadeh A. A., Abdollahi H., (2017), The study of genetic diversity of some species and sub-species of hawthorn (Crataegus spp.) in iran using SSR marker. MGJ. 12: 365-376.
[22] Saranyaadevi K., Subha V., Ravindran R. E., Renganathan S., (2014), Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int. J. Chem. Tech. Res. 6: 4533-4541.
[23] Ginting B., Maulana I., Karnila I., (2020), Biosynthesis copper nanoparticles using Blumea balsamifera leaf extracts: Characterization of its antioxidant and cytotoxicity activities. Surf. Interfac.21: 1-27.
[24] Kiriyanthan R. M., Sharmili S. A., Balaji R., Jayashree S., Mahboob S., Al-Ghanim K. A., Vaseeharan B., (2020), Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach. Photodiag. Photodyn. Therapy. 32: 102058-102067.
[25] Gholami M., Azarbani F., Hadi F., Murthy H. A., (2022), Eco-friendly synthesis of Copper nanoparticles using Mentha pulegium leaf extract: Characterisation, antibacterial and cytotoxic activities. Mater. Technol. 37: 1523-1531.
[26] Kang J. P., Kim Y. J., Singh P., Huo Y., Soshnikova V., Markus J., Yang D. C., (2018), Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. Artific. Cells Nanomedic. Biotechnol. 46: 1530-1540.
[27] Ojemaye M. O., Okoh S. O., Okoh A. I., (2021), Silver nanoparticles (AgNPs) facilitated by plant parts of Crataegus ambigua Becker AK extracts and their antibacterial, antioxidant and antimalarial activities. Green Chem. Lett. Rev. 14: 51-61.
[28] Mahmud S. A., (2021), Green synthesis of bioactive CuO@Fe3O4@Walnut shell nanocomposite Using Crataegus azarolus Var. aronia L. extract and its antivasoconstrictive action on rat’s aortic smooth muscle. Polytech. J. 11: 118-125.
[29] Najafpoor A., Norouzian-Ostad R., Alidadi H., Rohani-Bastami T., Davoudi M., Barjasteh-Askari F., Zanganeh J., (2020), Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. J. Molec. Liq. 303: 1-7.