Efficacy of green synthesis of Silver nanoparticles from Tulsi (Ocimum sanctum) leaf aqueous extract and its antibacterial effect on clinical multidrug-resistant Staphylococcus aureus in West Bengal

Document Type : Reasearch Paper

Authors

1 Research Scholar, Department of Physiology, Rammohan College, Kolkata, India.

2 Professor and Former Head, Department of Physiology, University of Calcutta, Kolkata, India.

3 Associate Professor, Department of Physiology, Rammohan College, Kolkata, India.

Abstract

Rapid augmentation in the prevalence of multidrug-resistant (MDR) Staphylococcus aureus is a worldwide threat. Advising newer antibiotics may fail to reduce the chances of the emergence of newer drug-resistant Staphylococcus aureus. Very little shreds of evidence can be found to treat clinical MDR Staphylococcus aureus with biogenic silver nanoparticles (AgNPs) in West Bengal. To prepare AgNPs biogenically using aqueous tulsi leaf extract (TLE) and also to assess its antibacterial effect upon clinical MDR Staphylococcus aureus, biogenic synthesis of the AgNPs using aqueous TLE was done, characterized those with UV-Vis Spectrophotometer, dynamic light scattering, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and evaluated the antibacterial activity against the clinical MDR Staphylococcus aureus. ANOVA followed by LSD post hoc test was used to test the differences between the OD (optical density) of different experimental sets. The biosynthesized AgNPs were spherical, monodispersed, and of smaller size (9-23 nm) with the involvement of eugenol, quercetin, and oleanolic acid present in the tulsi leaf. A significant change in OD was observed in AgNPs (prepared using TLE) treated broth compared to only tulsi leaf extract treated culture. There was a significant similarity between the efficacies of AgNPs and clindamycin (P < 0.05). Our findings propose that AgNPs synthesized using TLE were fast and efficient to ameliorate the bacterial growth, which may be used as a potent antibacterial agent for the treatment of clinical MDR Staphylococcus aureus infection in near future.

Keywords


  1. Shaw K., Mazumder S., (2020), An early year history of biological preparation of silver nanoparticles in West Bengal and their antibacterial activity: a review. Int. J. Contemporary Medical Res. 7: G1-G8.
  2. Rautela A., Rani J., Debnath M., (2019), Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Analyti. Sci. Technol. 10: 5-11.
  3. Vigneshwaran N., Kathe A. A., Varadarajan P. V., Nachane R. P., Balasubramanya R. H., (2007), Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol. 7: 1893-1897.
  4. Lin S., Huang R., Cheng Y., Liu J., Lau B. L., Wiesner M. R., (2013), Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research. 47: 3959-3965.
  5. He Y., Du Z., Lv H., Jia Q., Tang Z., Zheng X., (2013), Green synthesis of silver nanoparticles by chrysanthemum morifolium ramat. extract and their application in clinical ultrasound gel. Int. J. Nanomedic. 8: 1809-1815.
  6. Holt D. C., Holden M. T. G., Tong S. Y. C., Castillo-Ramirez S., Clarke L., Quail MA., (2011), A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment Staphyloxanthin. Genome Biol. Evolution. 3: 881-895.
  7. Shaw K., Mazumder S., (2021), An early year history of emergence of multidrug-resistant Staphylococcus aureus in west bengal: A review. Int. J. Life Sci. Pharma Res. 11: L169-178.
  8. Blot S. I., Vandewoude K. H., Hoste E. A., Colardyn F. A., (2002), Outcome and attributable mortality in critically Ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch. Internal Med. 162: 2229-2235.
  9. Pastagia M., Kleinman L. C., Lacerda de la Cruz E. G., Jenkins S. G., (2012), Predicting risk for death from MRSA bacteremia. Emerg. Infect. Diseas. 18: 1072-1080.
  10. Kanyo E. C., Nowacki A. S., Gordon S. M., Shrestha N. K., (2021), Comparison of mortality, stroke, and relapse for methicillin-resistant versus methicillin-susceptible Staphylococcus aureus infective endocarditis: A retrospective cohort study. Diagnos. Microbiol. Infect. Disease. 100: 115395.
  11. Maor Y., Belausov N., Ben-David D., Smollan G., Keller N., Rahav G., (2014), hVISA and MRSA endocarditis: an 8-year experience in a tertiary care centre. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 20: 730-736.
  12. Jones B. E., Ying J., Stevens V., Haroldsen C., He T., Nevers M., (2020), Empirical anti-MRSA vs standard antibiotic therapy and risk of 30-Day mortality in patients hospitalized for pneumonia. JAMA Internal Medicine. 180: 552-560.
  13. Delaney J. A. C., Schneider-Lindner V., Brassard P., Suissa S., (2008), Mortality after infection with methicillin-resistant Staphylococcus aureus (MRSA) diagnosed in the community. BMC Medicine. 6: 2-6.
  14. Hanberger H., Walther S., Leone M., Barie P. S., Rello J., Lipman J., (2011), Increased mortality associated with meticillin-resistant Staphylococcus aureus (MRSA) infection in the Intensive Care Unit: results from the EPIC II study. Int. J. Antimicrob. Agents. 38: 331-335.
  15. Tverdek F. P., Crank C. W., Segreti J., (2008), Antibiotic therapy of methicillin-resistant Staphylococcus aureus in critical care. Crit. Care Clinics. 24: 249-260.
  16. Newsom S. W., (2008), Ogston's coccus. The J. Hosp. Infect. 70: 369-372.
  17. Shambat S., Nadig S., Prabhakara S., Bes M., Etienne J., Arakere G., (2012), Clonal complexes and virulence factors of Staphylococcus aureus from several cities in India. BMC Microbiol. 12: 64-69.
  18. Booth M. C., Pence L. M., Mahasreshti P., Callegan M. C., Gilmore M. S., (2001), Clonal associations among Staphylococcus aureus isolates from various sites of infection. Infect. Immunity. 69: 345-352.
  19. Slavin Y. N., Asnis J., Häfeli U. O., Bach H., (2017), Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15: 65-71.
  20. Ozdal M., Gurkok S., (2022), Recent advances in nanoparticles as antibacterial agent. Admet dmpk. 10: 115-129.
  21. Pangli H., Vatanpour S., Hortamani S., Jalili R., Ghahary A., (2020), Incorporation of silver nanoparticles in hydrogel matrices for controlling wound infection. J. Burn Care & Res. 42: 785-793.
  22. Gurunathan S., Han J. W., Kwon D. N., Kim J. H., (2014), Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 9: 373-377.
  23. Gong P., Li H., He X., Wang K., Hu J., Tan W., (2007), Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 18: 285604.
  24. Roy A., Bulut O., Some S., Mandal A. K., Yilmaz M. D., (2019), Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. 9: 2673-9702.
  25. Bruna T., Maldonado-Bravo F., Jara P., Caro N., (2021), Silver nanoparticles and their antibacterial applications. Int. J. Molec. Sci. 22: 332-337.
  26. Shaw K., Mazumder S., (2020), Recent prevalence of clinical multidrug resistant Staphylococcus aureus in west bengal. IOSR J. Dental Medic. Sci. 19: 39-44.
  27. Beimer J. J., (1973), Antimicrobial susceptibility testing by the kirby-bauer disc diffusion method. Annals of Clinic. Laborat. Sci. 3: 135-140.
  28. Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100S2016.
  29. Brahmachari G., Sarkar S., Ghosh R., Barman S., Mandal N. C., Jash S. K, (2014), Sunlight-induced rapid and efficient biogenic synthesis of Silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Org. Medic. Chem. Lett. 4: 18-24.
  30. Sharma A., Sagar A., Rana J., Rani R., (2022), Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Lett. 10: 2-8.
  31. Shang J., Gao X., (2014), Nanoparticle counting: Towards accurate determination of the molar concentration. Chem. Soc. Rev. 43: 7267-7278.
  32. Gakiya-Teruya M., Palomino-Marcelo L., Rodriguez-Reyes J. C. F., (2018), Synthesis of highly concentrated suspensions of Silver nanoparticles by two versions of the chemical reduction method. Methods Protoc. 2: 3-7.
  33. Sharma M., Nayak P. S., Asthana S., Mahapatra D., Arakha M., Jha S., (2018), Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnol. 12: 211-217.
  34. Minana-Galbis D., Farfan M., Loren J. G., Fuste M. C., (2002), Biochemical identification and numerical taxonomy of Aeromonas spp. isolated from environmental and clinical samples in Spain. J. Appl. Microbiol. 93: 420-430.
  35. Ghia C. J., Waghela S., Rambhad G., (2020), A systemic literature review and meta-analysis reporting the prevalence and impact of methicillin-resistant Staphylococcus aureus infection in India. Infect. Diseases. 13: 1178633720970569.
  36. Rao N. S., Rao M. V. B., (2016), Green synthesis, characterization and biological studies on silver nanoparticles from Caesalpinia bonduc stem bark extract. Der Pharma Chemica. 8: 14-19.
  37. Kaur H., Kaur S., Singh M., (2013), Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity. Biologia. 68: 1048-1053.
  38. Roy A., Bharadvaja N., (2017), Silver nanoparticles synthesis from a pharmaceutically important medicinal plant Plumbago zeylanica. MOJ Bioequiv. Availab. 3: 118-121.
  39. Gui Z., Wang H., Ding T., Zhu W., Zhuang X., Chu W., (2014), Azithromycin reduces the production of a-hemolysin and biofilm formation in Staphylococcus aureus. Indian J. Microbiol. 54: 114-117.
  40. Basak S., Singh P., Rajurkar M., (2016), Multidrug resistant and extensively drug resistant bacteria: A study. J. Pathogens. 2016: 4065603.
  41. Pradeep M., Kruszka D., Kachlicki P., Mondal D., Franklin G., (2022), Uncovering the phytochemical basis and the mechanism of plant extract-mediated eco-friendly synthesis of Silver nanoparticles using ultra-performance liquid chromatography coupled with a photodiode array and high-resolution mass spectrometry. ACS Sustain. Chem. Eng. 10: 562-571.
  42. Elamawi R. M., Al-Harbi R. E., Hendi A. A., (2018), Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biolog. Pest Cont. 28: 28-34.
  43. Kgatshe M., Aremu O. S., Katata-Seru L., Gopane R., (2019), Characterization and antibacterial activity of biosynthesized Silver nanoparticles using the ethanolic extract of Pelargonium sidoides DC. J. Nanomater. 2019: 3501234.
  44. Nagar N., Jain S., Kachhawah P., Devra V., (2016), Synthesis and characterization of silver nanoparticles via green route. Korean J. Chem. Eng. 33: 2990-2997.
  45. Hema J. A., Malaka R., Muthukumarasamy N. P., Sambandam A., Subramanian S., Sevanan M., (2016), Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications. IET Nanobiotechnol. 10: 288-294.
  46. Nuchuchua O., Saesoo S., Sramala I., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U., (2009), Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res. Int. 42: 1178-1185.
  47. Sadeghi B., Rostami A., Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta Part A, Molec. Biomolec. Spectrosc. 134: 326-332.
  48. Koch A. L., (1968), Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects. J. Theoret. Biol. 18: 133-156.