Bio-molecular nano scale devices using first principle paradigm: A comprehensive survey

Document Type : Review

Authors

1 Deptartment of Electronics & Communication Engineering, B. P. Poddar Institute of Management & Technology, 137, V. I. P Road, Kolkata-700052, West Bengal, India.

2 Deptartment of Computer Science & Engg. Maulana Abul Kalam Azad University of Technology, NH-12(Old NH-34), Haringhata, Post Office – Simhat, P.S. – Haringhata, Nadia – 741249, West Bengal, India.

3 Department of Computer Science & Engiinering, Swami Vivekananda Institute of Science & Technology. Dakshin Gobindapur, P. S.: Sonarpur. Kolkata-700 145. West Bengal. India.

4 Department of Physics, University of Western Australia. M013, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.

Abstract

Computational study plays an important role to discover the potential of the bio-inspired nano scale molecular devices.  Density Functional Theory (DFT) is one of the popular methods to calculate the properties of the molecules which can not be possible with ab initio process, preferably for transition metals. This method is important for electronic structure calculation along with structure of molecules, atoms and solids can also be calculated using this DFT method. It is the quantitative method to understand the material properties using the laws of fundamental quantum mechanics. The key benefit of Non Equilibrium Greens’ Function (NEGF) is that it preserves the wave character of the electrons, which leads to a extremely precise description of nanoscale. Combining theses DFT and NEGF calculation first principle approach reveal the quantum-ballistic properties of atomic scale electronic structures which is therefore attracts the researchers for their innovative calculations for nano scale device modelling. In this paper, we briefly discuss the review on various bio-molecular devices and their significances. Now-a-days bio inspired devices show more attractions due to their versatility compared to the conventional electronic devices. These nano scale devices are popular due to their performance, speed and high charge transmission properties compared to other conventional semi-conductor devices.  This review work presents some experimental works at the molecular level along with a variety of research works that are performed based on first principle approach. Several case studies prevails the importance of DFT and NEGF based first principle approach for nano scale device modelling.

Keywords

Main Subjects


  1. Yang L., (2006), First-principles calculations on the electronic, vibrational, and optical properties of semiconductor nanowires(Doctoral dissertation, Georgia Institute of Technology).
  2. Kohn W., Sham L. J., (1965), Self-consistent equations including exchange and correlation effects.  Rev.140: 1133-1137.
  3. Hedin L., (1965), New method for calculating the one-particle Green's function with application to the electron-gas problem.  Rev.139: 796-803.
  4. Vohra R., Sawhney R. S., (2022), A thymine-based molecular structure to design logic gates and memory devices. J. Comput. Electron.21: 80-85.
  5. Wang M. L., Zhang B. H., Zhang W. F., Tian X. Y., Zhang G. P., Wang C. K., (2022), Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction.  Phys. B.31: 077303-077307.
  6. Wang Y., Ma Y., Ni E., Jiang Y., Li H., (2022), Effect of nitrogen atoms on structures and electron transport of N‐heteropentacene devices.  Phys. Chem.23: e202200177.
  7. Olejnik A., Dec B., Goddard III W. A., Bogdanowicz R., (2022), Hopping or tunneling? tailoring the electron transport mechanisms through hydrogen bonding geometry in the boron-doped diamond molecular junctions.  Phys. Chem. Lett.13: 7972-7979.
  8. Liu Z., Hu T., Adam Balila M. O., Zhang J., Zhang Y., Hu W., (2022), Investigation of SERS and electron transport properties of oligomer phenylacetyne-3 trapped in Gold junctions. Nanomaterials. 12: 571-576.
  9. Safapour S., Sabbaghi-Nadooshan R., Razaghian F., Shokri A., (2022), Modeling of molecular ternary logic gates and circuits based on diode structures.  Molec. Model.28: 130-136.
  10. Su D., Zhou S., Masai H., Liu Z., Zhou C., Yang C., Guo X., (2022), Stochastic binding dynamics of a photoswitchable single supramolecular complex.  Sci.9: 2200022.
  11. Dey D., Roy P., De D., (2019), First principle study of the self‐switching characteristics of the guanine based single optical molecular switch using carbon nanotube electrodes. IET Nanobiotechnol.13: 237-241.
  12. Dey D., Roy P., De D., (2019), Electronic transport properties of electrically doped cytosine‐based optical molecular switch with single‐wall carbon nanotube electrodes. IET Nanobiotechnol. 13: 484-492.
  13. Wang Y., Dai X., Li J., Xia Y., Ma Y., Ni E., Li H., (2021), Electron transport properties of TiC molecular devices with different interfacial contact.  Lett. A.415: 127650.
  14. Dey D., Roy P., De D., (2016), Electronic characterisation of atomistic modelling based electrically doped nano bio p‐i‐n FET. IET Comput. Digital Techniq.10: 273-285.
  15. Dey D., De D., (2018), First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes.  J. Nano Dimens.9: 134-144.
  16. Dey D., Roy P., De D., (2016), Nanoscale modeling of molecular nano Bio p–i–n tunnel FET with catalytic effect of iron nanofiber.  Nanoeng. Nanomanufac.6: 9-14.
  17. Dey D., Roy P., De D., (2021), Algorithmic approach of electrically doped single-walled cytosine nanotube-based biomolecular logic gate: A first principle paradigm.  Electron. Mater.50: 2254-2267.
  18. Dey D., Roy P., De D., (2021), Implementation of biomolecular logic gate using DNA and electrically doped GaAs nano-pore: A first principle paradigm.  Molec. Model.27: 1-11.
  19. Hu Y., Zhou Y., Ye J., Yuan S., Xiao Z., Shi J., Hong W., (2022), σ-dominated charge transport in sub-nanometer molecular junctions. Fundamental Res. InPress.
  20. Graziano M., Piccinini G., Mo E. F., Bottacin A., (2021), Modeling the interaction of light with single-molecule junctions. Thesis: Number of pages: 168.
  21. Wang L., Zhao Z., Shinde D. B., Lai Z., Wang D., (2021), Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions.  Communic. 57: 667-670.
  22. Pierpaoli M., Jakóbczyk P., Dec B., Giosue C., Czerwińska N., Lewkowicz A., Bogdanowicz R., (2022), A novel hierarchically-porous diamondized polyacrylonitrile sponge-like electrodes for acetaminophen electrochemical detection. Electrochimica Acta. 430: 141083-141088.
  23. Guo C., Wang F., Wang T., Liu Y., (2022), Anisotropic interface characteristics of bilayer GeSe based field effect transistors. Physica E: Low-dimens. Systems and Nanostruc.142: 115317-115322.
  24. Matsuura Y., (2022), Coherent spin transport in a multi-heme protein molecule.  Phys.558: 111510-111518.
  25. Lapham P., Georgiev V. P., (2022), Computational study of oxide stoichiometry and variability in the Al/AlOx/Al tunnel junction. Nanotechnology. 33: 265201-265206.
  26. Guo Y., Zhao X., Zhao H., Yang L., Lin L., Jiang Y., Yan X., (2022), Conformational change-modulated spin transport at single-molecule level in carbon systems.  Phys. B.31: 127201-127206.
  27. Wang M. L., Zhang B. H., Zhang W. F., Tian X. Y., Zhang G. P., Wang C. K., (2022), Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction.  Phys. B. 31: 077303-077308.
  28. Li M., Xu Y., Zhao B., Wu C., Zhou Q., Wang Z., Ju W., (2022), Exploration of electrical contact type in two-dimensional WS2/Nb2CX2 (X= H, F, Cl) heterostructures.  Surf. Sci.602: 154390-154396.
  29. Zhang S., Wu Y., Gao F., Shang H., Zhang J., Li Z., Hu P., (2022), Field effect transistor sensors based on in‐plane 1T′/2H/1T′ MoTe2 heterophases with superior sensitivity and output signals.  Func. Mater.32: 2205299-2205304.
  30. Yadav M. K., Gupta S. K., (2022), First principle study of spin tunneling current under field effect in magnetic tunnel junction for possible application in STT-RAM. IEEE Transact. Elect. Devic.69: 4894-4899.
  31. Gong X., Xu L., Sang P., Li Y., Chen J., (2022), Organic steep-slope nano-FETs: A rational design based on two-dimensional covalent-organic frameworks. Organic Electronics.100: 106379-106385.
  32. He H., Zhao J., Huang P., Sheng R., Yu Q., He Y., Cheng N., (2022), Performance improvement in monolayered SnS2 double-gate field-effect transistors via point defect engineering.  Chem. Chem. Phys. 24: 21094-21104.
  33. Sun Y., Zhang B., Zhang S., Zhang D., Dong J., Long M., (2022), Strain modulation on the spin transport properties of PTB junctions with MoC2 electrodes. Phys. Chem. Chem. Phys.24: 3875-3885.
  34. Wang M., Zhang W., Tian X., (2022), Study of the transport properties of cobalt atomic contact under mechanical strain in a nitrogen atmosphere.  E: Low-dimens. Sys. and Nanostruc.140: 115224-115229.
  35. Guo Y., Zhao G., Pan F., Quhe R., Lu J., (2022), The interfacial properties of monolayer MX–Metal contacts.  Elect. Mater. 51: 4824-4835.
  36. Xu K., Yi G., Wang W., Wang J., Wang C., Li Q., (2022), Theoretical insights into the diverse and tunable charge transport behavior of stilbene-based single-molecule junctions.  Phys.556: 111478-111485.
  37. Gaurav K., SanthiBhushan B., Gutierrez G., Ahuja R., Srivastava A., (2022), Trans-polyacetylene based organic spin valve for a multifunctional spin-based device: A first principle analysis.  Science: Adv. Mater. Dev.7: 100459-100465.
  38. Huang J., Zhu Y., Xie R., Hu Y., Li S., Lei S., Li Q., (2022), Tuning the spin caloritronic transport properties of InSe monolayers via transition metal doping. New J. Chem.46: 15373-15380.
  39. Chavan K. T., Chandra S., Kshirsagar A., (2023), Tunnel barrier to spin filter: Electronic-transport characteristics of transition metal atom encapsulated in a small Cadmium Telluride cage. 
  40. Sang P., Wang Q., Wei W., Tai L., Zhan X., Li Y., Chen J., (2022), Two-dimensional silicon atomic layer field-effect transistors: Electronic property, metal-semiconductor contact, and device performance. IEEE Transact. Electron Dev.69: 2173-2179.
  41. Dey D., Roy P., De D., (2020), First-principle study of spin transport in GaAs-Adenine-GaAs semi-conductor tunnel junction. In 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)(pp. 1-5). IEEE.
  42. Harrison N. M., (2003), An introduction to density functional theory. Nato Science Series Sub Series III Computer and Systems Sciences. 187: 45-70.
  43. Datta S., (2002), The non-equilibrium green's function (NEGF) formalism: An elementary introduction. In Digest. International Electron Devices Meeting.(pp. 703-706). IEEE.
  44. Chauhan S. S., Srivastava P., Shrivastava A. K., (2014), Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: An ab initio approach.  Nanosc.4: 461-467.
  45. Dey D., De D., (2018), First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes.  J. Nano Dimens.9: 134-144.
  46. Dey D., Roy P., De D., (2017), Detection of ammonia and phosphine gas using heterojunction biomolecular chain with multilayer GaAs nanopore electrode.  Nanostruct.7: 21-31.
  47. Tabe M., Tan H. N., Mizuno T., Muruganathan M., Anh L. T., Mizuta H., Moraru D., (2016), Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes.  Phys. Lett.108: 093502-093508.
  48. Krotnev I., (2013), Novel metallic field-effect transistors(Doctoral dissertation, University of Toronto).
  49. Song M. R., Shi H. L., Jiang Z. T., Ren Y. H., Yang J., Han Q. Z., (2022), Universalities of anomalous properties in electron transport through different Z-shaped phosphorene nanoribbon devices. Modern Phys. Lett. B. 36: 2150240-2150246.
  50. Song Y., Wang C. K., Chen G., Zhang G. P., (2021), A first-principles study of phthalocyanine-based multifunctional spintronic molecular devices.  Chem. Chem. Phys.23: 18760-18769.
  51. Dey D., Roy P., Purkayastha T., De D., (2016), A first principle approach to design gated pin J. Nano Res. 36: 16-30.