Structural, morphological, optical and electrochemical aspects of novel synthesized Nickel Oxide and Cobalt doped Nickel Oxide nanoparticles–An alternate electrode material for energy storage devices

Document Type : Reasearch Paper

Authors

Department of Physics, Sri GVG Visaklakshi College for Women, Udumalpet, India.

Abstract

Nickel oxide (NiO) and cobalt doped Nickel oxide (Co-NiO) nanoparticles were successfully synthesized by cost effective, environmentally friendly, and scalable eco-precipitation method. The prepared nanoparticles were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Fourier Transform Infrared Spectroscopy (FTIR), Optical spectroscopy (UV) and Cyclic voltammetric (CV). The structural characterization was carried out by X-ray diffraction which confirmed the polycrystalline nature of the particles with cubic structure. SEM analysis of the particles enabled the conclusion that the prepared particles were polycrystalline, irregularly spherical in shape, and agglomerated. The chemical bond and functional group were identified from FTIR spectroscopy and the elemental composition of prepared particles was identified by EDAX analysis. From UV-VIS absorbance spectra and Tauc relation, the type of transition and band gaps of the particles were estimated. The electrochemical performance was investigated using Cyclic Voltammetry (CV), Galvanostatic charge discharge (GCD), and Electrical Impedance Spectroscopy (EIS) in presence of 1M KOH as an electrolyte. The NiO and cobalt-doped NiO coated electrodes provide promising applications as electrode materials for energy storage devices.

Keywords

Main Subjects


  1. Jagjit N., Veronica A., (2022), Transition metal oxides for electrochemical energy storage. ISBN: 978-3-527-34493-2, April 2022, 432.
  2. Soo-Jin P., Young-Jung H., (2018), Prospective synthesis approaches to emerging materials for supercapacitor. Emerg. Mater. Energy Conv. Stor. 15 Book: 185-208.
  3. Ugochi K., Chimea Agnes C., Nkelea Sabastine E., Assumpta C., Nwanyaa N. M., Shindee Mesfin K., Paul M. E., Maaza Fabian I., Ezema I., (2020), Recent progress in Nickel Oxide-based electrodes for high-performance supercapacitors. Current Opin. Electrochem. 20: 30029-30026.
  4. Yan W., Zhiqiang S., Yi H., Yanfeng M., Chengyang W., Mingming C.,  Yongsheng C., (2009), Supercapacitor devices based on graphene. J. Phys. Chem. 113: 13103–13107.
  5. Nazir Ahmad M., Mohd Arif D., Mehrajud Din R., Sivakumar S., Shahid H., Khalid Mujasam B., (2022), Enhanced electrochemical properties of zinc and manganese co-doped NiO nanostructures for its high-performance supercapacitor applications. Chem. Communic.142: 109661-109666.
  6. Hao X., Yufang C., Yong L., Pei C., Dandan L., Yongyi Zh., Qingwen L., (2020), High–loading Co–doped NiO nanosheets on carbon–welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance. Energy Chem.20: 30139-X.
  7. Shyamli Ashok , Ashalatha V., Jasmine T., Nygil T., (2022), Enhanced electrochemical performance of facilely synthesized cobalt doped cubic NiO nanoflakes for supercapacitor application. J. Energ Stor. 55: 10549-10554.
  8. Juan W., Qin Zh., Yongheng X., Danyu Ch., Yiqing Z., Yunfei B., (2019), Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Surf. Sci. 483: 1158-1165.
  9. Shang J., Mingjun P., Yaqin D., Jingwei L., Wenxiu H., Miaomiao M., Min P., Runwei W., Qiliang P., Jianguo Zh., (2023), Designing hierarchical S and P coordinated Co-Ni bimetallic nanoparticles for enhanced supercapacitor electrode. Alloys and Comp. 944: 16925-16931.
  10. Baharimollamahelah Y., Sadrnezhaad. S. K, Hosseini D., (2008), NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. Energy Res. Center. Article ID: 470595.
  11. Priya G., Pandey N. K., Kuldeep K., Yadav B. C., (2021), Structural ,optical and LPG Sensing propertiesof znic-doped nickel oxide pellets operated at room temperature. Sensors and Actuators A. 319: 112484-112488.
  12. Abila Marselin M., Victor Jaya N., (2015), Synthesis and characterization of pure and Cobalt -doped NiO nanoparticles. J. Chem. Tech. Res. 7: 2654-2659.
  13. Subhash Dharmaraj Kh., Vinod Shankar Sh., (2019), Facile synthesis of nickel oxide nanoparticles of the degradation of Methylene blue and Rhodamine B dye a comparative study. Taibah Univ. Sci. 23: 1108-1118.
  14. Sonam D., Hari Chandra N., Shivendra Sigh P., Rajendra Prasad K., Shailendra R., (2022), Temperature reflected structural, optical and magnetic properties of nickel oxide. Magnetism. 2: 45-55.
  15. Sivakumar S., Nazir Ahmed M., (2021), Influence of variant temperatures in optical, magnetic properties of NiO. Asian J. Chem. 33: 1783-1790.
  16. Jayakumar G., Albert Irudayaraj A., Dhayal Raj A., (2017), Photocatalytic degradation of methylene blue by Nickel Oxide nanoparticles. Today Proceed. 4: 11690-11695.
  17. Yen-Linh Thi N., Jin Suk Ch., Seung Hyun H., (2020), Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Chem. Eng. 37: 1589-1598.
  18. Shraddha A., Azra Parveen., Ameer A., (2017), Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties. J. Lumines. 184: 250-255.
  19. Sathisha K., Gopalakrishna N., (2018), Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method. AIP Conf. Proceed. 1953: 100021-100026.
  20. Rezay Marand Z., Kermanpur A., Karimzadeh F., Eva M. B., Hassanabadi E., Halvani Anaraki E., Julian-Lopez B., Masi S., Mora-Sero I., (2020), Structural and electrical investigation of Cobalt-Doped NiOx/Perovskite interface for efficient inverted solar cells. 10: 872-877.
  21. Ponnusamy P. M., Agilan S., Muthukumarasamy N., Raja M., Velauthapillai D., (2016), Studies on cobalt doped NiO nanoparticles prepared by simple chemical method. Mater. Sci. Mater. Elect. 27: 399–406.
  22. Mishra A. K., Das D., (2011), Effect of transition metal (Fe, Co) doping in NiO nanostructures prepared by a wet chemical route. AIP Conf. Proc. 1349: 1139–1140.
  23. Nguyen Duc C., Tien D. T., Quyen T. N., Ho Van Minh H., Tran Thai H., Duong Tuan Q., WantanaK., Phong D. Tran., (2021), Highly porous Co-doped NiO nanorods: Facile hydrothermal synthesis and electrocatalytic oxygen evolution properties. 22: 202352-202364.
  24. Wu Z., Wang X., Huang J., Gao F. A., (2018), Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low over potential and high stability towards overall water splitting. Mater. Chem. A. 6: 167–178.
  25. Nisha J. Th., Raveendrana R., Varghese Vaidyanb A., Chithra P. G., (2008), Optical, electrical and structural studies of nickel-cobalt oxide nanoparticles. Ind. Eng. Mater. Sci. 15: 489-496.
  26. Zehraa N., Abdul-Ameer A., (2019), Novel co-precipitation method for synthesis of nanostructured nickel oxide in accordance to PH: Structural and optical properties as an active optical filter. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32: 321-327.
  27. Dongliang T., Fei W., (2004), New procedure towards size-homogeneous and well-dispersed nickel oxide nanoparticles of 30 nm. Lett. 58: 3226-3228.
  28. Sohrabnezhad Sh., Pourahmad A., Sadjadi M. S., Sadeghi B.,(2008), Nickel cobalt sulfide nanoparticles grown on AlMCM-41 molecular sieve. Physica E: Low-dimensional Systems and Nanostructures. l40: 684-688.
  29. Wei B., Wei T., Xie C., Liand K., Hang F., (2021), Promising activated carbon derived from sugarcane tip as electrode material for high-performance supercapacitors. The Royal Soc. Chem. 11: 28138-28147.
  30. Penga Ch., Xing-bin Y., Ru-taoW., Jun-weiL., Yu-jingO, Qun-ji X., (2013), Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta. 87: 401-408.
  31. Jinpyo H., Tirusew Tegafaw M., (2020), A comparative study of the effects of different methods for preparing RGO/Metal-Oxide nanocomposite electrodes on supercapacitor performance. Korean Phys. Soc. 76: 264–272.
  32. Lakshmana Naik R., Seshagiri Rao H., Nagaraja P., Bala Narsaiah T., (2021), Synthesis and characterization of Nickel Metavanadate (Ni3V2O8)-application as photocatalyst and supercapacitor. J. Nano Dimens. 12: 411-421.
  33. Beitollai H., Safaei M.,Tajik S., (2019), Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review. J. Nano Dimens. 10: 125-140.
  34. Goel R., Jha R., Ravikant Ch., (2020), Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles. Phys. Chem. Solids. 144: 109488-109492.
  35. Navaneethan D., Kandiah K., Rajendran R., Ramesh P., Dhanaraj G., (2018), Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Chem. Interm. 4: 5653–5667.
  36. Madan R. B.,  Akshay V. S.,   Pranay P. M.,   Sheshanath V. B., Sidhanath V. B., (2021), High-performance supercapacitor electrode based on naphthoquinone-appended dopamine neurotransmitter as an efficient energy storage material. New J. Chem. 45: 5154-5164.
  37. Bing-Ang Mei C., Munteshari O., Lau J., S. Dunn B., Pilon L., (2017), Physical interpretations of nyquist Plots for EDLC electrodes and devices. Phys. Chem. C. 122: 194–206.
  38. Wang H., Wang P., Zhen Y., (2013), Electrochemical capacitance of CoxNiyO preparation by microwave-assisted modification, state key laboratory of hollow fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
  39. Zhang J. H., Cai G. F., Zhou D., Tang H., Wan X. L., Gu C. D., Jiang-ping T., (2014), Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C. 2: 125-129.
  40. Liu Y., Liu Sh., Wang X., Sun X., Li Zhifeng Y., JiaLi W., Zhao F., Qin Ch., (2023), One-step synthesis of self-standing porous Co-doped NiO electrodes for high-performance supercapacitors. Alloys and Comp. 934: 167821-167826.
  41. Chuminjak Y., Daothong S., Reanpang P., Philipp Mensing O., Phokharatkul D., Jakmunee J., Wisitsoraa A., Tuantranont A., Singjai P., (2015), Electrochemical energy-storage performances of Nickel Oxide films prepared by sparking method. Royal Soc. Chem. 5: 67795-67802.
  42. Shajkumar A., Sahu S., Duraisamy N., Schmidt-Mende L., Ramadoss A., (2021), Layered double hydroxide as electrode material for high-performance supercapattery. Adv. Supercap. Supercapattery. 9: 199-254.