Designing bilayer lipid encapsulated mesoporous Silica nanostructures: Review on structural and functional features of protocell

Document Type : Review

Authors

1 Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist – Buldhana (M.S.) India - 443 101.

2 Department of Pharmaceutics, St. Johns Institute of Pharmacy and Research, Palghar (M.S.), India - 401 404.

3 University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon (M.S.) India – 425 001.

Abstract

The word "protocell" refers to lipid bilayer-coated mesoporous silica nanoparticles (LB-MSNs) which have recently come to light as a new-generation cargo transport vehicle that combines the special features of both organic and inorganic components. LB-MSN can regulate biodistribution effectively due to the presence of bilayer encapsulation while high payload capacity was due to the presence of porous nature of silica core. The MSN can be fine-tuned to generate various sizes, shapes, and surfaces while multiple cargos can be easily encapsulated with physical interaction. The bilayer coating avoids the premature release of chemotherapeutics and enhances biocompatibility. The biofunctionalization of protocells provides high colloidal stability and extends surfaces for further modification. The inorganic core can accommodate and surface-engineered multiple classes of biorelevant surface tags for active targeting. The site-specific or organ-specific delivery enhances the reliability of the material while the engineered surfaces could pave a way forward in treating various diseases. The multifaceted review highlights the potential use of bilayer encapsulated MSN for therapeutic delivery and management of multiple diseases.

Keywords

Main Subjects


1   Braun K., Pochert A., Lindén M., Davoudi M., Schmidtchen A., Nordström R., Malmstam M., (2016), Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J. Colloid. Interface Sci. 475: 161-170.
https://doi.org/10.1016/j.jcis.2016.05.002
2   Yang S., Song S., Han K., Wu X., Chen L., Hu Y., Wang J., Liu B., (2019), Characterization, in vitro evaluation and comparative study on the cellular internalization of mesoporous silica nanoparticle-supported lipid bilayers. Microp. Mesop. Mater. 284: 212-224.
https://doi.org/10.1016/j.micromeso.2019.04.043
3   Pednekar P. P., Godiyal S. C., Jadhav K. R., Kadam V. J., (2017), Mesoporous silica nanoparticles: A promising multifunctional drug delivery system. Nanostruc. Cancer. Ther. 593-621.
https://doi.org/10.1016/B978-0-323-46144-3.00023-4
4   Jafari S., Derakhshankhah H., Alaei L., Fattahi A., Varnamkhasti B. S., Saboury A. A., (2019), Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 109: 1100-1111.
https://doi.org/10.1016/j.biopha.2018.10.167
5   Stephen S., Gorain B., Choudhury H., Chatterjee B., (2021), Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Deliv. Transl. Res. 12: 105-123.
https://doi.org/10.1007/s13346-021-00935-4
6   Bakhshian N. A., Zare H., Razavi S., Mohammadi H., Torab A. P., Yazdani N., Bayandori M., Rabiee N., Mobarakeh J. I., (2020), Smart drug delivery: Capping strategies for mesoporous silica nanoparticles. Microp. Mesop. Mater. 299: 110-115.
https://doi.org/10.1016/j.micromeso.2020.110115
7   More M. P., Deshmukh P. K., (2020), Development of amine-functionalized superparamagnetic iron oxide nanoparticles anchored graphene nanosheets as a possible theranostic agent in cancer metastasis. Drug Deliv. Transl. Res. 10: 862-877.
https://doi.org/10.1007/s13346-020-00729-0
8   Deshmukh P. K., Lakade S. H., Jaiswal U. R., Harde M. T., More M. P., (2021), One-step synthesis approach of mesoporous silica packed with graphene oxide nanosheet: Characterisation and drug release aspects. Mater. Technol. 1-14.
https://doi.org/10.1080/10667857.2021.1972689
9   Desai D., Zhang J., Sandholm J., Lehtimäki J., Grönroos T., Tuomela J., Rosenholm J. N., (2017), Lipid bilayer-gated mesoporous Silica nanocarriers for tumor-targeted delivery of zoledronic acid in vivo. Mol. Pharm. 14: 3218-3227.
https://doi.org/10.1021/acs.molpharmaceut.7b00519
10   Dolstra C. C., Rinker T., Sankhagowit S., Deng S., Ting C., Dang A. T., Kuhl T. l., Sasaki D. Y., (2019), Mechanism of acid-triggered cargo release from lipid bilayer-coated mesoporous silica particles. Langmuir. 35: 10276-10285.
https://doi.org/10.1021/acs.langmuir.9b01087
11   Han N., Wang Y. Y., Bai J., Liu J., Wang Y. Y., Gao Y., Jiang T. Kang W., Wang S., (2016), Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microp. Mesop. Mater. 219: 209-218.
https://doi.org/10.1016/j.micromeso.2015.08.006
12   Zhang Y., Zhang H., Che E., Zhang L., Han J., Yang Y., Wang S., Zang M., Gao C., (2015), Development of novel mesoporous nano matrix-supported lipid bilayers for oral sustained delivery of the water-insoluble drug, lovastatin. Colloids Surf. B. Biointerfaces. 128: 77-85.
https://doi.org/10.1016/j.colsurfb.2015.02.021
13   Ashley C. E., Carnes E. C., Phillips G. K., Padilla D., Durfee P. N., Brown P. A., Hanna T. N., Liu J., Phillips B.,. Carter M. B., Carroll N. J., Jiang X., Dunphy D. R., Willman C. L., Petsev D. N., Evans D. G., Parikh A. N., Chackerian B., Wharton W., Peabody D. S., Brinker C. J., (2011), The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10: 389-397.
https://doi.org/10.1038/nmat2992
14   Zhang B., Chen X., Fan X., Zhu J., Wei Y., Zheng H., Zheng H., Wang B., Piao J., Li F., (2021), Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells. Acta. Pharmacol. Sin. 42: 832-842.
https://doi.org/10.1038/s41401-021-00648-x
15   Tu J., Bussmann J., Du G., Gao Y., Bouwstra J. A., Kros A., (2018), Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. Int. J. Pharm. 543: 169-178.
https://doi.org/10.1016/j.ijpharm.2018.03.037
16   Villegas M. R., Baeza A., Noureddine A., Durfee P. N., Butler K. S., Agola J. O., Brinker J. Valliet-Regi M., (2018), Multifunctional protocells for enhanced penetration in 3D extracellular tumoral matrices. Chem. Mater. 30: 112-120.
https://doi.org/10.1021/acs.chemmater.7b03128
17   Tarn D., Ashley C. E., Xue M., Carnes E. C., Zink J. I., Brinker C. J., (2013), Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 46: 792-801.
https://doi.org/10.1021/ar3000986
18   Vazquez N. I., Gonzalez Z., Ferrari B., Castro Y., (2017), Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Bol. Soc. Esp. Cerámica. Vidr. 56: 139-145.
https://doi.org/10.1016/j.bsecv.2017.03.002
19   Li Z., Zhang Y., Feng N., (2019), Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin. Drug Deliv. 16: 219-237.
https://doi.org/10.1080/17425247.2019.1575806
20   Li T., Shi S., Goel S., Shen X., Xie X., Chen Z., Zhang H., Li S., Qin X., Yang H., Wu C., Liu Y., (2019), Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta. Biomater. 89: 1-13.
https://doi.org/10.1016/j.actbio.2019.02.031
21   Peetla C., Stine A., Labhasetwar V., (2009), Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6: 1264-1276.
https://doi.org/10.1021/mp9000662
22   Mornet S., Lambert O., Duguet E., Brisson A., (2005), The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano. Lett. 5: 281-285.
https://doi.org/10.1021/nl048153y
23   Cauda V., Engelke H., Sauer A., Arcizet D., Bräuchle C., Rädler J., Bein T., (2010), Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano. Lett. 10: 2484-2492.
https://doi.org/10.1021/nl100991w
24   Liu J., Jiang X., Ashley C., Brinker C. J., (2009), Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 131: 7567-7569.
https://doi.org/10.1021/ja902039y
25   Porotto M., Yi F., Moscona A., La Van D. A., (2011), Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus. PLOS. ONE. 6: e16874.
https://doi.org/10.1371/journal.pone.0016874
26   Epler K., Padilla D., Phillips G., Crowder P., Castillo R., Wilkinson D., Wilkinson B.,. Burgard C, Kalinich R., Jason T., Bryce Ch., Cheryl W., David P., Walker W., C Jeffrey B., Ashley C., Carnes E., (2012), Delivery of ricin toxin a-chain by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. Adv. Healthc. Mater. 1: 348-353.
https://doi.org/10.1002/adhm.201200022
27   Li Z., Shan X., Chen Z., Gao N., Zeng W., Zeng X., Mei L., (2021), Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv. Sci. 8: 2002589.
https://doi.org/10.1002/advs.202002589
28   Singh A. K., Singh S. S., Rathore A. S., Singh S. P., Mishra G., Awasthi R., Mishra S. K., Gautam V., Singh S. K., (2021), Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater. Sci. Eng. 7: 3737-3753.
https://doi.org/10.1021/acsbiomaterials.1c00514
29   Taleghani A. S., Nakhjiri A. T., Khakzad M. J., Rezayat S. M., Ebrahimnejad P., Heydarinasab A., Akbarzadeh A., Marjani A., (2021), Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J. Mol. Liq. 328: 115417.
https://doi.org/10.1016/j.molliq.2021.115417
30   Li Z., Zhang Y., Zhu C., Guo T., Xia Q., Hou X., Liu W., Feng N., (2020), Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int. J. Pharm. 586: 119576.
https://doi.org/10.1016/j.ijpharm.2020.119576
31   Natarajan S. K., Selvaraj S., (2014), Mesoporous silica nanoparticles: the importance of surface modifications and its role in drug delivery. RSC Adv. 4: 14328-14334.
https://doi.org/10.1039/c4ra00781f
32   Rathnayake K., Patel U., Pham C., Mc Alpin A., Budisalich T., Jayawardena S. N., (2020), Targeted delivery of antibiotic therapy to inhibit pseudomonas aeruginosa using lipid-coated mesoporous silica core-shell nanoassembly. ACS Appl. Bio. Mater. 3: 6708-6721.
https://doi.org/10.1021/acsabm.0c00622
33   Zhao G., Li N., Yin M., Xu M., (2021), Atorvastatin (ATV)-loaded lipid bilayer-coated mesoporous silica nanoparticles enhance the therapeutic efficacy of acute kidney injury. J. Biomed. Nanotechnol. 17: 1754-1764.
https://doi.org/10.1166/jbn.2021.3153
34   Tu J., Du G., Reza N. M., Mönkäre J., van der M. K., Bomans P. H. H., Sommerdijk N. A. J. M., Slütter B., Jiskoot W., Bouwstra J. A., Kros A., (2017), Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen delivery. Pharm. Res. 34: 1693-1706.
https://doi.org/10.1007/s11095-017-2177-4
35   Noureddine A., Maestas-Olguin A., Saada E. A., LaBauve A. E., Agola J. O., Baty K. E., Howard T., Sabo J. K., Espinoza C. R. S., Doudna J. A., Schoeniger J. S., Butler K. S., Negrete O. A., Brinker C. J., Serda R. E., (2020), Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta. Biomater. 114: 358-368.
https://doi.org/10.1016/j.actbio.2020.07.027
36   Tao J., Fei W., Tang H., Li C., Mu C., Zheng H., Li F., Zhu Z., (2019), Angiopep-2-conjugated "core-shell" hybrid nanovehicles for targeted and pH-triggered delivery of arsenic trioxide into glioma. Mol. Pharm. 16: 786-97.
https://doi.org/10.1021/acs.molpharmaceut.8b01056
37   Bayir S., Barras A., Boukherroub R., Szunerits S., Raehm L., Richeter S., Durand J., (2018), Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochem. Photobiol. Sci. 17: 1651-1674.
https://doi.org/10.1039/c8pp00143j