Saturable absorption and self-focusing properties of Molybdenum Diselenide thin films

Document Type : Reasearch Paper

Authors

1 Department of Physics, University of Neyshabur, Neyshabur, 9319774446, Iran.

2 Department of Physics, Faculty of Science, Yazd University, Yazd, Iran.

Abstract

The next generation of photonics and nano-optical devices may be based on two-dimensional(2D) transition metal dichalcogenides (TMDs). In this research, molybdenum diselenide (MoSe2) nanosheets, as one important member of TMDs, have been synthesized by the solvothermal method and characterized through XRD patterns, SEM, and TEM images. Nanosheets were found to have a hexagonal phase based on XRD patterns and the crystallinity percentage is 24.8 %.  The lattice constants of the hexagonal phase of MoSe2 are calculated as a= 3.08 ͦ A, c= 13.72 ͦ A. The calculated average value of the crystallite size, dislocation density, and micro strain are 21.935 nm, 2.138   nm-2 and 9.070 , respectively. A few layers of nanosheets without wrinkles were observed on TEM and SEM. Next, the synthesized nanosheets were employed to prepare thin films with three different thicknesses using the spin coating method.  By employing a continuous wave (CW) Nd : YAG laser at 532 nm via a Z-scan approach, this study investigates how thin film thickness affects the thermal nonlinear optical (NLO) responses of MoSe2 nanosheets. The magnitude of NLO coefficients of the prepared thin films decreased with increasing film thickness. It is observed that the prepared thin films possess saturable absorption (SA) as well as the self-focusing effect. Saturable absorbers and mode-locking devices can be developed with MoSe2 thin films because of their improved NLO properties. 

Keywords

Main Subjects


1   Abutalib M. M., Shkir M., Yahia I. S., AlFaify S., El-Naggar A. M., Ganesh V., (2016), Thickness dependent optical dispersion and nonlinear optical properties of nanocrystalline fluorescein dye thin films for optoelectronic applications. Optik. 127: 6601-6609.
https://doi.org/10.1016/j.ijleo.2016.04.136
2   Liu W., Liu M., Han H., Fang S., Teng H., Lei M., Wei Z., (2018), Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photon. Res. 6: 15-21.
https://doi.org/10.1364/PRJ.6.000C15
3   Wang G., Liang G., Baker-Murray A. A., Wang K., Wang J. J., Zhang X., Bennett D., Luo J. T., Wang J., Fan P., Blau W. J., (2018), Nonlinear optical performance of few-layer molybdenum diselenide as a slow-saturable absorber. Photon. Res. 6: 674-680.
https://doi.org/10.1364/PRJ.6.000674
4   Wang G., Baker-Murray A. A., Blau W. J., (2019), Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev. 13: 1800282.
https://doi.org/10.1002/lpor.201800282
5   Wang K., Wang J., Fan J., Lotya M., O'Neill A., Fox D., Feng Y., Zhang X., Jiang B., Zhao Q., (2013), Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano. 7: 9260-9267.
https://doi.org/10.1021/nn403886t
6   Dehghani Z., Ostovari F., Nadafan M., (2022), Investigation of the structural, dielectric, and optical properties of MoSe2 nanosheets. J. Appl. Phys. 131: 213101.
https://doi.org/10.1063/5.0088016
7   Kaur R., Singh1 K. P., Tripathi S. K., (2020), Study of linear and non-linear optical responses of MoSe2-PMMA nanocomposites. J. Mater. Sci. 31: 19974-19988.
https://doi.org/10.1007/s10854-020-04520-2
8   Etminan M., Hosseini N. S., Ajamgard N., Koohian A., Ranjbar M., (2019), The effect of thin film thickness on thermal nonlinear optical properties and surface morphology of Cu nanostructure thin films. Optik. 199: 163517.
https://doi.org/10.1016/j.ijleo.2019.163517
9   Sheik-bahae M., Said A. A., Van Stryland E. W., (1989), High-sensitivity, single-beam n2 measurements. Opt. Lett. 14: 955-957.
https://doi.org/10.1364/OL.14.000955
10   Li H., Xia H., Lan C., Li C., Zhang X., Li J., Liu Y., (2015), Passively Q-switched erbium-doped fiber laser based on few-layer MoS2 saturable absorber. IEEE Photonics Technol. Lett. 27: 69-72.
https://doi.org/10.1109/LPT.2014.2361899
11   Khazaeinezhad R., Kassani S. H., Nazari T., Jeong H., Kim J., Choi K., Lee J. U., Kim J. H., Cheong H., Yeom D. I., (2015), Saturable optical absorption in MoS2 nano-sheet optically deposited on the optical fiber facet. Opt. Commun. 335: 224 -230.
https://doi.org/10.1016/j.optcom.2014.09.038
12   Xia H., Li H., Lan C., Li C., Zhang X., Zhang S., Liu Y., (2014), Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express. 22: 17341-17348.
https://doi.org/10.1364/OE.22.017341
13   Wang S., Yu H., Zhang H., Wang A., Zhao M., Chen Y., Mei L., Wang J., (2014), Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 26: 3538 -3544.
https://doi.org/10.1002/adma.201306322
14   Xu B., Cheng Y., Wang Y., Huang Y., Peng J., Luo Z., Xu H., Cai Z., Weng J., Moncorg'e R., (2014), Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber. Opt. Express. 22: 28934 -28940.
https://doi.org/10.1364/OE.22.028934
15   Kong L., Xie G., Yuan P., Qian L., Wang S., Yu H., Zhang H., (2015), Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS2 saturable absorber mirror. Photonics Res. 3: A47 -A50.
https://doi.org/10.1364/PRJ.3.000A47
16   Du J., Wang Q., Jiang G., Xu C., Zhao C., Xiang Y., Chen Y., Wen S., Zhang H., (2014), Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4: 6346-6351.
https://doi.org/10.1038/srep06346
17   Zhang H., Lu S., Zheng J., Du J., Wen S., Tang D., Loh K., (2014), Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express. 22: 7249 -7260.
https://doi.org/10.1364/OE.22.007249
18   Liu M., Qi Y .L., Liu H., Luo A.P., Luo Z.C., Xu W.C., Chu-Jun Zhao C.J., Zhang H., (2014), Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Opt. Express. 22: 22841 -22846.
https://doi.org/10.1364/OE.22.022841
19   Ferrando A., Martínez Pastor J. P., Su'arez I., (2018), Toward metal halide perovskite nonlinear photonics. J. Phys. Chem. Lett. 9: 5612-5623.
https://doi.org/10.1021/acs.jpclett.8b01967
20   Dehghani Z., Nadafan M., Mohammadzadeh Shamloo M. B., Shadrokh Z., Gholipour S., Rajabi Manshadi M. H., Darbari S., Abdi Y., (2022), Investigation of dielectric, linear, and nonlinear optical properties of synthesized 2D Ruddlesden-Popper-type halide perovskite. Opt. Laser Technol. 155: 108352.
https://doi.org/10.1016/j.optlastec.2022.108352
21   Khazaeizhad R., Kassani S. H., Jeong H., Yeom D. I., Oh K., (2014), Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes. Opt. Express. 22: 23732 -23742.
https://doi.org/10.1364/OE.22.023732
22   Saminathan R. , Hadidi H., Tharwan M., Alnujaie A., Khamaj J. A., Venugopal G., (2022), Raman spectroscopy-assisted characterization of nanoform MoS2 thin film Transistor, overview. Scaning. 2022: Article ID 3255615.
https://doi.org/10.1155/2022/3255615
23   Zhang D., Wen C., Mcclimon J. B., Masih Das P., Zhang Q., Leone A. G., Srinivas V., Mandyam S., Drndić M., Charlie Johnson A. T., Zhao M. Q., (2021), Rapid growth of monolayer MoSe2 films for large-area electronics. Adv. Electron. Mater. 7: 2001219.
https://doi.org/10.1002/aelm.202001219
24   Hsu C., Frisenda R., Schmidt R., Arora A., Vasconcellos S. M., Bratschitsch R., Zant H. S. J., Castellanos-Gomez A., (2019), Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe. Adv. Opt. Mater. 7: 1900239.
https://doi.org/10.1002/adom.201900239
25   Zhang J., Wu M., Liu T., Kang W., Xu J., (2017), Hierarchical nanotubes constructed from interlayer-expanded MoSe2 nanosheets as highly durable electrodes for sodium storage. J. Mater. Chem. A. 5: 24859-24866.
https://doi.org/10.1039/C7TA08538A
26   Ghritlahre V., Kumari J., Agarwal P., (2017), Synthesis and study of molybdenum diselenide (MoSe2) by Solvo-thermal method, AIP Conference Proceedings. 1953: 050048-1-050048-4.
https://doi.org/10.1063/1.5032703
27   Ravinder G., Sreelatha C. J., Ganesh V., Shkir M., Anis M., Rao P. C., (2019), Thickness-dependent structural, spectral, linear, nonlinear and z-scan optical studies of V2O5 thin films prepared by a low-cost sol-gel spin coating technique. Mater. Res. Express. 6: 096403.
https://doi.org/10.1088/2053-1591/ab2992
28   Kamaraj C., Pasupathi G., (2022), Growth and characterization of a semi-organic nonlinear optical single crystal: Sarcosine barium chloride. J. Mater. Sci. Mater. 33: 3501-3513.
https://doi.org/10.1007/s10854-021-07542-6
29   Wu Z., Lu Y., Huang J., Peng J., He C., (2022), Third-order optical nonlinearity measurements and optical limiting experiment in Tm: YAG crystal. Appl. Opt. 61: 392-397.
https://doi.org/10.1364/AO.445128
30   Habibi M., Davoodianidalik M., (2018), High Power laser systems, Chapter 10: Self-Focusing of High-Power Laser Beam through Plasma.
https://doi.org/10.5772/intechopen.75036
31   Felip S. V., (2011), Nitride-based semiconductor nanostructures for applications in optical communications at 1.5 µm, PhD thesis, Departamento de Electr'onica , Universidad de Alcal'a.
32   Egwunyenga J., Onuabuchi V., Okoli L., Nwankwo E., (2021), Effect of SILAR cycles on the thickness, structural, optical properties of cobalt selenide thin films. Int. Res. J. Multidiscip. Technovation. 3: 1-9.
https://doi.org/10.34256/irjmt2141
33   Koneva N. A., Solov'eva Y. V., Starenchenko V. A., Kozlov E. V., (2009), Parameters of dislocation structure and work hardening of Ni 3 Ge. Mater. Res. Soc. 842: 1-6.
https://doi.org/10.1557/PROC-842-S5.25
34   Jigi G. M., Abza T., Girma A., (2021), Synthesis and characterization of aluminum dope zinc sulfide (Al : ZnS) thin films by chemical bath deposition techniques. J. Appl. Biotechnol. Bioeng. 8: 55-58.
https://doi.org/10.15406/jabb.2021.08.00252
35   Dehghani Z., Ostovari F., Sharifi S., (2023), A comparison of the crystal structure and optical properties of reduced graphene oxide and aminated graphene nanosheets for optoelectronic device applications. Optik. 274: 170551.
https://doi.org/10.1016/j.ijleo.2023.170551
36   Li J., Li H., Hao J., (2022), Fullerene superlattices containing charge transfer complexes for enhanced nonlinear optical performance. Nanoscale. 14: 2344-2351.
https://doi.org/10.1039/D1NR06748F
37   Nadafan M., Dehghani Z., Shadrokh Z., Abdi Y., (2023), A remarkable third-order nonlinear optical behavior of single-crystal bromide organic-inorganic lead halide perovskite. Opt. Laser Technol. 160: 109055.
https://doi.org/10.1016/j.optlastec.2022.109055
38   Gundogdu Y., Sarilmaz A., Gencer A., Ozel F., Surucu G., Kilic H. S., Ersoz M., (2022), Copper-based thiospinel quantum dots as potential candidates for nonlinear optical applications. Opt. Laser Technol. 148: 107752.
https://doi.org/10.1016/j.optlastec.2021.107752
39   Pattipaka S., Joseph A., Bharti G. P., Raju K. C. J., Khare A., Pamu D., (2019), Thickness-dependent microwave dielectric and nonlinear optical properties of Bi 0.5 Na 0.5 TiO3 thin films, Appl. Surf. Sci. 488: 391-403.
https://doi.org/10.1016/j.apsusc.2019.05.264
40   Verrone R. N., Moisset C., Lemarchand F., Campos A., Cabié M., Perrin-Pellegrino C., Lumeau J., Natoli J. Y., Iliopoulos K., (2020), Thickness-dependent optical nonlinearities of nanometer-thick Sb2Te3 thin films: Implications for mode-locking and super-resolved direct laser writing. ACS Appl. Nano Mater. 3: 7963-7972.
https://doi.org/10.1021/acsanm.0c01445