Synthesis and characterization of Nickel Oxide with Nitrogen quantum Carbon dots as nanoadsorbent (NiO-NCQD) nanocomposite

Document Type : Reasearch Paper

Authors

1 PhD candidate- Analytical Chemistry - Department of Chemistry - Faculty of Science - Tishreen University - Syria.

2 Analytical Chemistry - Department of Chemistry - Faculty of Science - Tishreen University – Syria.

Abstract

This research deals with the manufacture of nickel oxide nanoparticles NiO, it has been characterized by Field emission scanning electron microscopy (FESEM), and Fourier Transform Infrared (FTIR), and their radii were range (10-20) nm and frequency (58.49%), where did not exceed the largest particles is (60 nm).  Nitrogen carbon quantum dots (NCQD) were prepared based on a carbon-rich source and a nitrogen-rich source with a heat source. Nitrogen carbon quantum dots (NCQD) were prepared from L-glutamic acid as a carbon source and ethylene diamine (EDA) as a nitrogen-rich source depending on the source of heat: (reflex, autoclave, UV-digestion, oven, and microwave). The (NCQD) synthesis was characterized using spectral scanning (UV-VIS), then, the effect of its quenching ratio was studied using a sulfuric acid solution, it was found that the best thermal method is the autoclave then a UV-digester then oven and microwave.  Nickel oxide-nitrogen quantum carbon dots (NiO-NCQD) are prepared from a mix between NiO nanoparticles with nitrogen carbon quantum dots as nano-adsorbent. (NiO-NCQD) has been characterized by Fourier Transform Infrared (FTIR) and energy-dispersive X-ray (EDX).

Keywords

Main Subjects


1   Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., (2004), Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126: 12736-12737.‏
https://doi.org/10.1021/ja040082h
2   Wang Y., Hu A., (2014), Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C. 2: 6921-6939.‏
https://doi.org/10.1039/C4TC00988F
3   Xu J., Wang C., Li H., Zhao W., (2020), Synthesis of green-emitting carbon quantum dots with double carbon sources and their application as a fluorescent probe for selective detection of Cu2+ ions. RSC Adv. 10: 2536-2544.‏
https://doi.org/10.1039/C9RA08654D
4   Yi Z., Li X., Zhang H., Ji X., Sun W., Yu Y., Sain M., (2021), High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta. 222: 121663.‏
https://doi.org/10.1016/j.talanta.2020.121663
5   Li H., Kang Z., Liu Y., Lee S. T., (2012), Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22: 24230-24253.‏
https://doi.org/10.1039/c2jm34690g
6   Shelby H., (2017), Effects of dopants (N & P) and synthesis conditions on the size and quantum yield of carbon quantum dots.‏ AJN. 14: 33-36.
7   Molaei M. J., (2019), Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Adv. 9: 6460-6481.‏
https://doi.org/10.1039/C8RA08088G
8   Tong C., Garreis R., Knothe A., Eich M., Sacchi A., Watanabe K., Kurzmann A., (2021), Tunable valley splitting and bipolar operation in graphene quantum dots. Nano Lett. 21: 1068-1073.‏
https://doi.org/10.1021/acs.nanolett.0c04343
9   Zhao C., Song X., Liu Y., Fu Y., Ye L., Wang N., Liu J., (2020), Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol. 18: 1-32.‏
https://doi.org/10.1186/s12951-020-00698-z
10   Facure M. H., Schneider R., Mercante L. A., Correa D. S., (2020), A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environm. Sci: Nano. 7: 3710-3734.‏
https://doi.org/10.1039/D0EN00787K
11   Koutsogiannis P., Thomou E., Stamatis H., Gournis D., Rudolf P., (2020), Advances in fluorescent carbon dots for biomedical applications. Adv. Phys. X. 5: 1758592.‏
https://doi.org/10.1080/23746149.2020.1758592
12   Wu C., Chiu D. T., (2013), Highly fluorescent semiconducting polymer dots for biology and medicine. Angewandte Chem. Int. Edition. 52: 3086-3109.‏
https://doi.org/10.1002/anie.201205133
13   Yang P., Zhou X., Zhang J., Zhong J., Zhu F., Liu X., Li Y., (2021), Natural polyphenol fluorescent polymer dots. Green Chem. 23: 1834-1839.‏
https://doi.org/10.1039/D0GC02824J
14   Tao S., Feng T., Zheng C., Zhu S., Yang B., (2019), Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. The J. Phys. Chem. Lett. 10: 5182-5188.‏
https://doi.org/10.1021/acs.jpclett.9b01384
15   Nguyen T. P., Nguyen D. L. T., Nguyen V. H., Le T. H., Vo D. V. N., Ly Q. V., Le Q. V., (2019), Recent progress in carbon-based buffer layers for polymer solar cells. Polymers. 11: 1858-1862.‏
https://doi.org/10.3390/polym11111858
16   Wang Y., Chen L., Zhao X., Song H., He F., Cheng S., Wang S., (2023), Unraveling the phosphorus-nitrogen bridge in carbon quantum dots/carbon nitride for efficient photodegradation of organic contaminants. Carbon. 204: 284-294.‏
https://doi.org/10.1016/j.carbon.2022.12.063
17   Dong Y., Pang H., Yang H. B., Guo C., Shao J., Chi Y., Yu T., (2013), Carbon based dots CO doped with nitrogen and sulfur for high quantum yield and excitation independent emission. Angewandte Chemie. 125: 7954-7958.‏
https://doi.org/10.1002/ange.201301114
18   Yang M., Meng X., Li B., Ge S., Lu Y., (2017), N, S co-doped carbon dots with high quantum yield: Tunable fluorescence in liquid/solid and extensible applications. J. Nanopart. Res. 19: 1-12.‏
https://doi.org/10.1007/s11051-017-3914-7
19   Elsayed M. H., Jayakumar J., Abdellah M., Mansoure T. H., Zheng K., Elewa A. M., Chou H. H., (2021), Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Appl. Catal. B: Environm. 283: 119659.‏
https://doi.org/10.1016/j.apcatb.2020.119659
20   Williams I. B. I., Fodjo E. K., Amadou K., Albert T., Kong C., (2022), Enhancing the photocatalytic activity of TiO2 nanoparticles using green Carbon quantum dots. Int. J. Nano Dimens. 13: 144-154.‏
21   Abdellatif A. A., Younis M. A., Alsharidah M., Al Rugaie O., Tawfeek H. M., (2022), Biomedical applications of quantum dots: Overview, challenges, and clinical potential. Int. J. Nanomedic. 1951-1970.‏
https://doi.org/10.2147/IJN.S357980
22   Shi Y., Liu X., Wang M., Huang J., Jiang X., Pang J., Zhang X., (2019), Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. Int. J. Biolog. Macromolec. 128: 537-545.‏
https://doi.org/10.1016/j.ijbiomac.2019.01.146
23   Ahmadian-Fard-Fini S., Ghanbari D., Amiri O., Salavati-Niasari M., (2020), Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohyd. Polym. 229: 115428.‏
https://doi.org/10.1016/j.carbpol.2019.115428
24   Wang H., Sun P., Cong S., Wu J., Gao L., Wang Y., Zou G., (2016), Nitrogen-doped carbon dots for "green" quantum dot solar cells. Nanoscale Res. Lett. 11: 1-6.‏
https://doi.org/10.1186/s11671-016-1231-1
25   Kramer I. J., Sargent E. H., (2014), The architecture of colloidal quantum dot solar cells: Materials to devices. Chem. Rev. 114: 863-882.‏
https://doi.org/10.1021/cr400299t
26   Wu X., Wu L., Cao X., Li Y., Liu A., Liu S., (2018), Nitrogen-doped carbon quantum dots for fluorescence detection of Cu2+ and electrochemical monitoring of bisphenol A. RSC Adv. 8: 20000-20006.‏
https://doi.org/10.1039/C8RA03180K
27   Zhang R., Chen W., (2014), Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions. Biosens. Bioelect. 55: 83-90.‏
https://doi.org/10.1016/j.bios.2013.11.074
28   Gao Y., Han L., Gao X., He W., Chu R., Ma Y., (2021), Application of carbon quantum dot fluorescent materials in metal ions detection. In E3S Web of Conferences (245: 03080). EDP Sciences.‏
https://doi.org/10.1051/e3sconf/202124503080
29   Kumar Y. R., Deshmukh K., Sadasivuni K. K., Pasha S. K., (2020), Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 10: 23861-23898.‏
https://doi.org/10.1039/D0RA03938A
30   Naushad M., Ahamad T., Ubaidullah M., Ahmed J., Ghafar A. A., Al-Sheetan K. M., Arunachalam P., (2021), Nitrogen-doped carbon quantum dots (N-CQDs)/Co3O4 nanocomposite for high performance supercapacitor. J. King Saud Univ.-Sci. 33: 101252.‏
https://doi.org/10.1016/j.jksus.2020.101252
31   Makama A. B., Umar M., Saidu S. A., (2018), CQD-based composites as visible-light active photocatalysts for purification of water. Visible-Light Photocatalysis of Carbon-Based Materials. 1-17.‏
https://doi.org/10.5772/intechopen.74245
32   Nguyen A. T. N., Shim J. H., (2021), All carbon hybrid N-doped carbon dots/carbon nanotube structures as an efficient catalyst for the oxygen reduction reaction. RSC Adv. 11: 12520-12530.‏
https://doi.org/10.1039/D1RA01197A
33   Martins N. C., Ângelo J., Girão A. V., Trindade T., Andrade L., Mendes A., (2016), N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B: Environm. 193: 67-74.‏
https://doi.org/10.1016/j.apcatb.2016.04.016
34   Liu T., Cui Z. W., Zhou J., Wang Y., Zou Z. G., (2017), Synthesis of pyridinic-rich N, S co-doped carbon quantum dots as effective enzyme mimics. Nanoscale Res. Lett. 12: 1-8.‏
https://doi.org/10.1186/s11671-017-2149-y
35   Xu M., Li Z., Zhu X., Hu N., Wei H., Yang Z., Zhang Y., (2013), Hydrothermal/solvothermal synthesis of Graphene quantum dots and their biological applications. Nano Biomedic. Eng. 4: 65-41.
https://doi.org/10.5101/nbe.v4i3.p65-71
36   El-Shabasy R. M., Farouk Elsadek M., Mohamed Ahmed B., Fawzy Farahat M., Mosleh K. N., Taher M. M., (2021), Recent developments in carbon quantum dots: properties, fabrication techniques, and bio-applications. Processes. 9: 388-392.‏
https://doi.org/10.3390/pr9020388
37   Rai P., Yoon J. W., Jeong H. M., Hwang S. J., Kwak C. H., Lee J. H., (2014), Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. Nanoscale. 6: 8292-8299.‏
https://doi.org/10.1039/C4NR01906G
38   Wang S., Li Y., Yang J., Wang T., Yang B., Cao Q., Hagfeldt A., (2022), Critical role of removing impurities in Nickel Oxide on high efficiency and long term stability of inverted perovskite solar cells. Angewandte Chem. Int. Edition. 61: e202116534.‏
https://doi.org/10.1002/anie.202116534
39   Raissi M., Sajjad M. T., Farré Y., Roland T. J., Ruseckas A., Samuel I. D., Odobel F., (2018), Improved efficiency of PbS quantum dot sensitized NiO photocathodes with naphthalene diimide electron acceptor bound to the surface of the nanocrystals. Solar Energy Mater. Solar Cells. 181: 71-76.‏
https://doi.org/10.1016/j.solmat.2017.12.029
40   Raeisi-Kheirabadi N., Nezamzadeh-Ejhieh A., Aghaei H., (2021), Electrochemical amperometric sensing of loratadine using NiO modified paste electrode as an amplified sensor. Iranian J. Catal. 11: 181-189.‏
41   Aghazadeh M., Ghaemi M., Sabour B., Dalvand S., (2014), Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J. Solid State Electrochem. 18: 1569-1584.‏
https://doi.org/10.1007/s10008-014-2381-7
42   Sohrabnezhad S., Pourahmad A., Sadjadi M. S., Sadeghi B., (2008), Nickel cobalt sulfide nanoparticles grown on AlMCM-41 molecular sieve. Physica E: Low-dimensional Systems and Nanostructures. 40: 684-688.‏
https://doi.org/10.1016/j.physe.2007.09.081
43   Rahimi M., Sadeghi B., Kargarrazi M., (2021), Influence of Al2O3 additive on mechanical properties of wollastonite glass-ceramics. ADMT Journal. 14: 25-33.
44   Taimoory S. M., Rahdar A., Aliahmad M., Sadeghfar F., Hajinezhad M. R., Jahantigh M., Trant J. F., (2018), The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J. Molec. Liq. 265: 96-104.‏
https://doi.org/10.1016/j.molliq.2018.05.105
45   Ali K., Iqbal J., Jan T., Ahmad I., Wan D., Ahmad I., (2017), Influence of NiO concentration on structural, dielectric and magnetic properties of core/shell CuFe2O4/NiO nanocomposites. Mater. Chem. Phys. 195: 283-294.‏
https://doi.org/10.1016/j.matchemphys.2017.03.013