Fused nanogranular polyaniline-sawdust (Cocos nucifera) composite for Lead adsorption application

Document Type : Reasearch Paper

Authors

1 Physics Department, Western Mindanao State University, Normal Road, Baliwasan, Zamboanga City, 7000, Philippines.

2 Health Physics Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines.

Abstract

The problem of heavy metal contamination in industrial effluents requires new and environment-friendly agents for wastewater treatment. In this study, we developed fused nanogranular polyaniline-sawdust (PANI/SD) composites for lead ion removal through the adsorption process. To prevent the aggregation of polyaniline (PANI), coconut (Cocos nucifera) sawdust (SD), an agricultural waste, was used as a substrate via in situ chemical polymerization in varied sawdust-to-aniline ratios. The scanning electron micrographs (SEM) of the obtained PANI/SD composites revealed a nanogranular structure that indicated the complete coating of polyaniline on sawdust. Furthermore, the PANI/SD composites were verified to be in the emeraldine oxidation state through Fourier-Transform Infrared (FT-IR) spectroscopy. Among the formulations studied, the PANI/SD composite with a sawdust-to-aniline ratio of 1.2 g/mL was found to have the highest adsorption capacity of 738.9 mg/g. This study presents the promising potential of PANI/SD as a novel and cost-effective adsorbent material to remove lead from contaminated water.

Keywords

Main Subjects


1   Wani A. L., Ara A., Usmani J. A., (2015), Lead toxicity: A review. Interdiscip Toxicol. 8: 55-64.
https://doi.org/10.1515/intox-2015-0009
2   Chowdhury I. R., Chowdhury S., Mazumder M. A. J., Al-Ahmed A., (2022), Removal of lead ions (Pb2+) from water and wastewater: a review on the low-cost adsorbents. Appl. Water Science. 12: 185-191.
https://doi.org/10.1007/s13201-022-01703-6
3   Collin M. S., Venkatraman S. K., Vijayakumar N., Kanimozhi V., Arbaaz S. M., Stacey R. G. S., Anusha J., Choudhary R., Lvov V., Tovar G. I., Senatov F., Koppala S., Swamiappan S., (2022), Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazardous Mater. Adv. 7: 100094.
https://doi.org/10.1016/j.hazadv.2022.100094
4   Ajiboye T. O., Oyewo O. A., Onwudiwe D. C., (2021), Conventional and current methods of toxic metals removal from water using g-C3N4-based materials. J. Inorg. Organom. Polym. Mater. 31: 1419-1442.
https://doi.org/10.1007/s10904-020-01803-3
5   Banerjee M., Bar N., Basu R. K., Das S. K., (2017), Comparative study of adsorptive removal of Cr(VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ. Sci. Pollut. Res. 24: 10604-10620.
https://doi.org/10.1007/s11356-017-8582-8
6   Manawi Y., McKay G., Ismail N., Kayvani Fard A., Kochkodan V., Atieh M. A., (2018), Enhancing lead removal from water by complex-assisted filtration with acacia gum. Chem. Eng. J. 352: 828-836.
https://doi.org/10.1016/j.cej.2018.07.087
7   Nur-E-Alam M., Abu Sayid Mia M., Ahmad F., Mafizur Rahman M., (2018), Adsorption of chromium (Cr) from tannery wastewater using low-cost spent tea leaves adsorbent. Appl. Water Sci. 8: 129-135.
https://doi.org/10.1007/s13201-018-0774-y
8   Zhang T., Tu Z., Lu G., Duan X., Yi X., Guo C., Dang Z., (2017), Removal of heavy metals from acid mine drainage using chicken eggshells in column mode. J. Environ. Manage. 188: 1-8.
https://doi.org/10.1016/j.jenvman.2016.11.076
9   He J., Li Y., Wang C., Zhang K., Lin D., Kong L., Liu J., (2017), Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl. Surf. Sci. 426: 29-39.
https://doi.org/10.1016/j.apsusc.2017.07.103
10   Eskandari E., Kosari M., Abadi Farahani D., Khiavi N. D., Saeedikhani M., Katal R., Zarinejad M., (2020), A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep. Purif. Technol. 231: 115901.
https://doi.org/10.1016/j.seppur.2019.115901
11   Ali A. H., (2022), Pani modified Ag NPs fluorescence sensor for detection of nitrate ion. Int. J. Nano Dimens. 13: 374-386.
https://doi.org/10.21203/rs.3.rs-1449278/v1
12   Valsaraj Puthiyandi V., Chathoth J., (2021), A novel method for the fabrication of proton conducting and antimicrobial Tin Cerium Phosphate-polyaniline nanocomposite ion exchange material. Int. J. Nano Dimens. 12: 369-379.
13   Casado U. M., Aranguren M. I., Marcovich N. E., (2014), Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultras. Sonochem. 21: 1641-1648.
https://doi.org/10.1016/j.ultsonch.2014.03.012
14   Gapusan R. B., Balela M. D. L., (2020), Adsorption of anionic methyl orange dye and lead (II) heavy metal ion by polyaniline-kapok fiber nanocomposite. Mater. Chem. Phys. 243: 122682.
https://doi.org/10.1016/j.matchemphys.2020.122682
15   Hajjaoui H., Soufi A., Boumya W., Abdennouri M., Barka N., (2021), Polyaniline/nanomaterial composites for the removal of heavy metals by adsorption: A review. J. Compos. Sci. 5: 233-238.
https://doi.org/10.3390/jcs5090233
16   Mohammada S. G., Abulyazied D. E., Ahmed S. M., (2019), Application of polyaniline/activated carbon nanocomposites derived from different agriculture wastes for the removal of Pb(II) from aqueous media. Desalinat. Water Treatm. 170: 12-17.
https://doi.org/10.5004/dwt.2019.24694
17   van der Merwe D., Pickrell J. A., (2018), Chapter 18 - Toxicity of nanomaterials. In R. C. gupta (Ed.), veterinary toxicology (Third Edition) (pp. 319-326). Academic Press.
https://doi.org/10.1016/B978-0-12-811410-0.00018-0
18   Arora R., (2021), Polyaniline conducting polymer/rice husk for chromium adsorbent from wastewater for environment/energy management. Mater. Today: Proceed. 45: 5299-5302.
https://doi.org/10.1016/j.matpr.2021.01.901
19   Pham T. T., Mai T. T. T., Bui M. Q., Mai T. X., Tran H. Y., Phan T. B., (2014), Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods. Adv. Nat. Sci: Nanosc. Nanotechnol. 5: 015010.
https://doi.org/10.1088/2043-6262/5/1/015010
20   Qomi M. H., Eisazadeh H., Hosseini M., Namaghi H. A., (2014), Manganese removal from aqueous media using polyaniline nanocomposite coated on wood sawdust. Synthetic Metals. 194: 153-159.
https://doi.org/10.1016/j.synthmet.2014.04.016
21   Samani M. R., Toghraie D., (2019), Removal of hexavalent chromium from water using polyaniline/ wood sawdust/ poly ethylene glycol composite: An experimental study. J. Env. Health Sci. Eng. 17: 53-62.
https://doi.org/10.1007/s40201-018-00325-y
22   Jha S., Gaur R., Shahabuddin S., Ahmad I., Sridewi N., (2022), Kinetic and isothermal investigations on the use of low cost coconut fiber-polyaniline composites for the removal of chromium from wastewater. Polymers.14: 4264-4268.
https://doi.org/10.3390/polym14204264
23   Yanovska E., Savchenko I., Petrenko O., Davydov V., (2022), Adsorption of some toxic metal ions on pine sawdust in situ immobilized by polyaniline. Appl. Nanosc. 12: 861-868.
https://doi.org/10.1007/s13204-021-01862-z
24   Srinivasa Rao P., Suresh Reddy K. V. N., Kalyani S., Krishnaiah A., (2007), Comparative sorption of copper and nickel from aqueous solutions by natural neem (Azadirachta indica) sawdust and acid treated sawdust. Wood Sci. Technol. 41: 427-442.
https://doi.org/10.1007/s00226-006-0115-4
25   Cao Y., Andreatta A., Heeger A. J., Smith P., (1989), Influence of chemical polymerization conditions on the properties of polyaniline. Polymer. 30: 2305-2311.
https://doi.org/10.1016/0032-3861(89)90266-8
26   Chowdhury P., Saha B., (2005), Potassium dichromate initiated polymerization of aniline. Indian J. Chemi. Technol. 12: 671-675.
27   Kumar A., Jangir L. K., Kumari Y., Kumar M., Kumar V., Awasthi K., (2015), Optical and structural study of polyaniline/polystyrene composite films. Macromolec. Sympos. 357: 229-234.
https://doi.org/10.1002/masy.201500039
28   Smolin Y. Y., Soroush M., Lau K. K. S., (2017), Oxidative chemical vapor deposition of polyaniline thin films. Beilstein J. Nanotechnol. 8: 1266-1276.
https://doi.org/10.3762/bjnano.8.128
29   AOAC International, (2016), AOAC 999.10: Lead, Cadmium, Zinc, Copper and iron in foods. Atomic absorption spectrophotometry after microwave digestion. In J. Dr. George W. Latimer (Ed.), Official Methods of Analysis of AOAC International (20th Ed.).
30   Stejskal J., Sapurina I., Trchová M., (2010), Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polym. Sci. 35: 1420-1481.
https://doi.org/10.1016/j.progpolymsci.2010.07.006