Novel epoxy nanocomposite with nano TiO2 and Al2O3 by D-optimal combined design and partial least squares discriminate analysis for food packaging

Document Type : Reasearch Paper

Authors

1 Department of Food Science and Technology, Sari Branch, Islamic Azad University, Sari, Iran

2 Department of Food Science and Technology, University of Tehran, Iran

3 Professor at Sharif University of Technology, Sharif University of Technology, Tehran, Iran

Abstract

This study aimed to use D-optimal combined design, and partial least squares discriminate analysis (PLS-DA) to investigate the mechanical properties, and chemical compatibilities of improved epoxy nanocomposites by nano TiO2/Al2O3. Experimental design of adhesion, and wedge bend properties led the results into the optimum values of TiO2= 0.66%, Al2O3= 1.33%, dispersant= 0.000017%. The variable importance of the projection (VIP) score and PLS-DA modeling were used to categorize mechanical properties and chemical compatibilities. The best point could be identified from the other samples, based on the results. PLS-DA could explain 94.32% of the total variance in the data and wedge bend, adhesion and thermal treatment were the most significant variables with VIP scores at 2.73, 2.02, and 1.38, respectively. The morphology was examined using a field emission scanning electron microscope (FESEM). The thermal properties of nanocomposites were described by differential scanning calorimeter (DSC) to define the glass transition temperature for epoxy-nanocomposites. The mechanical properties were measured to assess the storage modulus via the dynamic mechanical analysis (DMA). Epoxy/TiO2/Al2O3 nanocomposite exhibited a uniform particle distribution, as indicated by the FESEM image. Adding nanoparticles significantly raised the glass transition temperature. The presence of nanoparticles can be used to enhance storage modulus functionally. 

Keywords

Main Subjects


[1] Jin F. L., Li X., Park S. J., (2015), Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 29: 1-11. https://doi.org/10.1016/j.jiec.2015.03.026
[2] Xiong Y., Jiang Z., Xie Y., Zhang X., Xu W., (2013), Development of a DOPO‐containing melamine epoxy hardeners and its thermal and flame‐retardant properties of cured products. J. Appl. Polym. Sci. 127: 4352-4358. https://doi.org/10.1002/app.37635
[3] Jiang W., Zhou G., Wang C., Xue Y., Niu, C., (2021), Synthesis and self-healing properties of composite microcapsule based on sodium alginate/melamine-phenol-formaldehyde resin. Constr. Build. Mater. 271: 121541-121544. https://doi.org/10.1016/j.conbuildmat.2020.121541
[4] Qiao W., Li S., Guo G., Han S., Ren S., Ma Y., (2015), Synthesis and characterization of phenol-formaldehyde resin using enzymatic hydrolysis lignin. J. Ind. Eng. Chem. 21: 1417-1422. https://doi.org/10.1016/j.jiec.2014.06.016
[5] Kopal I., Vršková J., Labaj I., Ondrušová D., Hybler P., Harničárová M., Kušnerová M., (2018), The effect of high-energy ionizing radiation on the mechanical properties of a melamine resin, phenol-formaldehyde resin, and nitrile rubber blend. Materials. 11: 2405-2408. https://doi.org/10.3390/ma11122405
[6] Rahimi M., Sadeghi B., Kargar Razi M., (2021), Influence of Al2O3 additive on mechanical properties of wollastonite glass-ceramics. ADMT Journal. 14: 25-33.
[7] Thirumalai A., Harini K., Pallavi P., Gowtham P., Girigoswami K., Girigoswami A., (2023), Nanotechnology driven improvement of smart food packaging. Mater. Res. Innov. 27: 223-232. https://doi.org/10.1080/14328917.2022.2114667
[8] Shi X. H., Li X. L., Li Y. M., Li Z., Wang D. Y., (2022), Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Compos. Part B. Eng. 109663. https://doi.org/10.1016/j.compositesb.2022.109663
[9] Montazeri A., Montazeri N., Pourshamsian K., Tcharkhtchi A., (2011), The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int. J. Polym. Analys. Charact. 16: 465-476. https://doi.org/10.1080/1023666X.2011.600517
[10] Pötschke P., Bhattacharyya A. R., Janke A., Goering H., (2003), Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10: 389-404. https://doi.org/10.1163/156855403771953650
[11] Ashjari M., Mahdavian A. R., Ebrahimi N. G., Mosleh Y., (2010), Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J. Inorg. Organomet. Polym. Mater. 20: 213-219. https://doi.org/10.1007/s10904-010-9337-x
[12] Rajaraman T. S., Gandhi V. G., Nguyen V. H., Parikh S. P., (2023), Aluminium foil-assisted NaBH4 reduced TiO2 with surface defects for photocatalytic degradation of toxic fuchsin basic dye. Appl. Nanosc. 13: 3925-3944. https://doi.org/10.1007/s13204-022-02628-x
[13] Ramanathan T., Abdala A. A., Stankovich S., Dikin D. A., Herrera-Alonso M., Piner R. D., Brinson L. C., (2008), Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3: 327-331. https://doi.org/10.1038/nnano.2008.96
[14] Chatterjee A., Muhammad S. I., (2008), Fabrication and characterization of TiO2-epoxy nanocomposite. Mater. Sci. Eng. A. 487: 574-585. https://doi.org/10.1016/j.msea.2007.11.052
[15] Mousavi S. R., Estaji S., Paydayesh A., Arjmand M., Jafari S. H., Nouranian S., Khonakdar H. A., (2022), A review of recent progress in improving the fracture toughness of epoxy based composites using carbonaceous nanofillers. Polym. Compos. 43: 1871-1886. https://doi.org/10.1002/pc.26518
[16] Al-Turaif H. A., (2010), Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog. Org. Coat. 69: 241-246. https://doi.org/10.1016/j.porgcoat.2010.05.011
[17] Nguyen T. A., Nguyen T. V., Thai H., Shi X., (2016), Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. J. Nanosci. Nanotechnol. 16: 9874-9881. https://doi.org/10.1166/jnn.2016.12162
[18] Jiang T., Kuila T., Kim N. H., Lee J. H., (2014), Effects of surface-modified silica nanoparticles attached graphene oxide using isocyanate-terminated flexible polymer chains on the mechanical properties of epoxy composites. J. Mater. Chem. A. 2: 10557-10567. https://doi.org/10.1039/C4TA00584H
[19] Majdzadeh-Ardakani K., Navarchian A. H., Sadeghi F., (2010), Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr. Polym. 79: 547-554. https://doi.org/10.1016/j.carbpol.2009.09.001
[20] Nguyen T. A., Nguyen Q. T., Bach T. P., (2019), Mechanical properties and flame retardancy of epoxy resin/nanoclay/multiwalled carbon nanotube nanocomposites. J. Chem. 2019: Article ID 3105205 | https://doi.org/10.1155/2019/3105205
[21] Keyoonwong W., Guo Y., Kubouchi M., Aoki S., Sakai T., (2012), Corrosion behavior of three nanoclay dispersion methods of epoxy/organoclay nanocomposites. Int. J. Corros. 2012: Article ID 924283 | https://doi.org/10.1155/2012/924283
[22] Bittmann B., Haupert F., Schlarb A. K., (2012), Preparation of TiO2 epoxy nanocomposites by ultrasonic dispersion and resulting properties. J. Appl. Polym. Sci. 124: 1906-1911. https://doi.org/10.1002/app.34493
[23] Duarte B., Mamede R., Carreiras J., Duarte I. A., Caçador I., Reis-Santos P., Fonseca V. F., (2022), Harnessing the full power of chemometric-based analysis of total reflection X-ray fluorescence spectral data to boost the identification of seafood provenance and fishing areas. Foods 11: 2699-2703. https://doi.org/10.3390/foods11172699
[24] de Queiroz Baddini A. L., de Paula Santos J. L. V., Tavares R. R., de Paula L. S., da Costa Araújo Filho H., Freitas R. P., (2022), PLS-DA and data fusion of visible reflectance, XRF and FTIR spectroscopy in the classification of mixed historical pigments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 265: 120384-120387. https://doi.org/10.1016/j.saa.2021.120384
[25] Della Gatta G., Richardson M. J., Sarge S. M., Stølen S., (2006), Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry*(IUPAC Technical Report). Pure Appl. Chem. 78: 1455-1476. https://doi.org/10.1351/pac200678071455
[26] Maity T., Samanta B. C., Dalai S., Banthia A. K., (2007), Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Mater. Sci. Eng. A. 464: 38-46. https://doi.org/10.1016/j.msea.2007.01.128
[27] Zhai L. L., Ling G. P., Wang Y. W., (2008), Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. Int. J. Adhes. Adhes. 28: 23-28. https://doi.org/10.1016/j.ijadhadh.2007.03.005
[28] Khalil N. Z., Johanne M. F., Ishak M., (2019), Influence of Al2O3 nanoreinforcement on the adhesion and thermomechanical properties for epoxy adhesive. Compos. Part B Eng. 172: 9-15. https://doi.org/10.1016/j.compositesb.2019.05.007
[29] Bezerra M. A., Santelli R. E., Oliveira E. P., Villar L. S., Escaleira L. A., (2008), Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76: 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
[30] Botelho B. G., Reis N., Oliveira L. S., Sena M. M., (2015), Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem. 181: 31-37. https://doi.org/10.1016/j.foodchem.2015.02.077
[31] Ben Samuel J., Julyes Jaisingh S., Sivakumar K., Mayakannan A. V., Arunprakash V. R., (2021), Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite. Silicon. 13: 1703-1712. https://doi.org/10.1007/s12633-020-00569-0
[32] Radoman T. S., Džunuzović J. V., Grgur B. N., Gvozdenović M. M., Jugović B. Z., Miličević D. S., Džunuzović E. S., (2016), Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modified with vitamin B6. Prog. Org. Coat. 99: 346-355. https://doi.org/10.1016/j.porgcoat.2016.06.014
[33] Yu Z. Q., You S. L., Yang Z. G., Baier H., (2011), Effect of surface functional modification of nano-alumina particles on thermal and mechanical properties of epoxy nanocomposites. Adv. Compos. Mater. 20: 487-502. https://doi.org/10.1163/092430411X579104
[34] Vryonis O., Virtanen S. T. H., Andritsch T., Vaughan A. S., Lewin P. L., (2019), Understanding the cross-linking reactions in highly oxidized graphene/epoxy nanocomposite systems. J. Mater. Sci. 54: 3035-3051. https://doi.org/10.1007/s10853-018-3076-8
[35] Yao X. F., Yeh H. Y., Zhou D., Zhang Y. H., (2006), The structural characterization and properties of SiO2-epoxy nanocomposites. J. Compos. Mater. 40: 371-381. https://doi.org/10.1177/0021998305055193
[36] Mohammadi M., Davoodi J., Javanbakht M., Rezaei H., (2018), Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study. Mater. Res. Express 6: 035309. https://doi.org/10.1088/2053-1591/aaf6d5
[37] Sharma S. K., Sudarshan K., Sahu M., Pujari P. K., (2016), Investigation of free volume characteristics of the interfacial layer in poly (methyl methacrylate)-alumina nanocomposite and its role in thermal behaviour. RSC Adv. 6: 67997-68004. https://doi.org/10.1039/C6RA07051E
[38] Wang Z., Pang H., Li G., Zhang Z., (2006), Glass transition and free volume of high impact polystyrene/TiO2 nanocomposites determined by dilatometry. J. Macromol. Sci. B. 45: 689-697. https://doi.org/10.1080/00222340600890497
[39] Evora Victor M. F., Arun S., (2003), Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater. Sci. Eng. A. 361: 358-366. https://doi.org/10.1016/S0921-5093(03)00536-7
[40] Natarajan B., Li Y., Deng H., Brinson L. C., Schadler L. S., (2013), Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules. 46: 2833-2841. https://doi.org/10.1021/ma302281b
[41] Aradhana R., Mohanty S., Nayak S. K., (2018), Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer. 141: 109-123. https://doi.org/10.1016/j.polymer.2018.03.005
[42] Sunday D. F., David L. G., (2015), Thermal and rheological behavior of polymer grafted nanoparticles. Macromolecules. 48: 8651-8659. https://doi.org/10.1021/acs.macromol.5b00987
[43] Cao Y. M., Sun J., Yu D. H., (2002), Preparation and properties of nano‐Al2O3 particles/polyester/epoxy resin ternary composites. J. Appl. Polym. Sci. 83: 70-77. https://doi.org/10.1002/app.10020
[44] Kumar A., Sharma K., Dixit A. R., (2019), A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54: 5992-6026. https://doi.org/10.1007/s10853-018-03244-3
[45] Singh S. K., Singh S., Kumar A., Jain A., (2017), Thermo-mechanical behavior of TiO2 dispersed epoxy composites. Eng. Fract. Mech. 184: 241-248. https://doi.org/10.1016/j.engfracmech.2017.09.005
[46] Moon R. J., Martini A., Nairn J., Simonsen J., Youngblood J., (2011), Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941-3994. https://doi.org/10.1039/c0cs00108b