Synthesis and characterization of Carbon-inserted phenolic resin nanocomposites

Document Type : Reasearch Paper

Authors

Nano Research Lab, School of Sciences, ITM University, Gwalior MP, 474001, India

Abstract

This paper presents the synthesis and characterization of nanocomposites made from Activated Carbon and Phenol-Formaldehyde, known for their exceptional thermal properties, chemical stability, and affinity for graphite and other forms of carbon. These composites are primarily designed for high-temperature applications that demand strength retention. X-ray diffraction (XRD) analysis reveals a distinct carbon peak in the nanocomposites, while Fourier-transform infrared (FTIR) spectroscopy indicates the presence of functional group peaks in their respective regions. The aim of this study is to provide a detailed account of the chemical synthesis and characterization of activated carbon/Phenol-Formaldehyde nanocomposites. The results of the XRD and FTIR analyses demonstrate the presence of a sharp carbon peak and functional group peaks in their respective regions. These properties render the composites suitable for high-temperature applications requiring strength retention.

Keywords

Main Subjects


  1. Liu L., Ruan R., Yang W. W., (2017), Clay/polymer nanocomposites for biomedical applications: A review. Mater. Sci. Eng. C. 75: 1324-1327.
  2. Amini Nia A., Pourshamsian Kh., Sadeghi B., (2020), Nano-ZnO impregnated on starch highly efficient heterogeneous bio-based catalyst for one-pot synthesis of pyranopyrimidinone and xanthene derivatives as potential. J. Org. Chem. 56: 1279-1288. https://doi.org/10.1134/S1070428020070234
  3. Osayemwenre G. O., Meyer E. L., (2014), Thermal decomposition of EVA composite encapsulant of single junction amorphous silicon photovoltaic (PV) module. J. Ovonic Res. 10: 221-225.
  4. Rezaei R., Darzi S. J., Yazdani M., (2020), Synthesis and Evaluation of 198Au/PAMAM-MPEG-FA against Cancer Cells. Antican. Agents in Medic. Chem. 20: 1250-1265. doi: 10.2174/1871520620666200220113452. PMID: 32077832. https://doi.org/10.2174/1871520620666200220113452
  5. Park S., Lee K. H., (2015), Polymer-metal nanocomposites: A review. J. Ind. Eng. Chem. 31: 1-6.
  6. Lin Y., Li D., Li X., Li G., Huang Z., (2014), Study on the mechanical properties of phenolic resin composites filled with carbon nanotubes. Polym. Compos. 35: 343-346. https://doi.org/10.1002/pc.22778
  7. Zhang M., Lai X., Xu Y., Cao J., (2017), Surface modification of alumina nanoparticles for improving the scratch resistance of phenolic resin-based composites. Compos. Part B: Eng. 125: 114-117.
  8. Fong H., Lau K. T., (2009), Effect of filler loading on phenolic resin composites. Electronic J. Mater. Sci. 44: 4659-4663.
  9. Fang X., Zhai T., Gautam U. K., Li L., Wu L., Bando Y., Golberg D., (2011), ZnS nanostructures: From synthesis to application. Prog. Mater. Sci. 56: 175-179. https://doi.org/10.1016/j.pmatsci.2010.10.001
  10. Thottoli A., Achuthanunni A., (2013), Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. J. Nanostruc. Chem. 3: 56-60. https://doi.org/10.1186/2193-8865-3-56
  11. Kalu O., M., Amah A. N., Echi I., (2019), Physiochemical properties of mixed twin clay deposits in Awgbu used for pottery and possible structural applications. Niger. J. Technol. 38: 355-363. https://doi.org/10.4314/njt.v38i2.12
  12. Tiwary C. S., Kumbhakar P., Mitra A. K., Chattopadhyay K., (2009), Synthesis of wurtzite-phase ZnS nanocrystal and its optical properties. J. Lumines. 129: 1366-1369. https://doi.org/10.1016/j.jlumin.2009.07.004
  13. Kole A. K., Kumbhakar P., (2012), Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Res. Phys. 2: 150-155. https://doi.org/10.1016/j.rinp.2012.09.010
  14. Ummartyotin S., Bunnak N., Juntaro J., Sain M., Manuspiya H., (2012), Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci. 14: 299-303. https://doi.org/10.1016/j.solidstatesciences.2011.12.005
  15. Horoz S., Dai Q., Maloney F. S., Yakami B., Pikal J. M., Zhang X., Wang J., Wang W., Tang J., (2015), Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells. Phys. Rev. Appl. 3: 1-7. https://doi.org/10.1103/PhysRevApplied.3.024011
  16. Sahare S., Dhoble S. J., Singh P., Ramrakhiani M., (2013), Fabrication of ZnS : Cu/PVA nanocomposite electroluminescence devices for flat panel displays. Adv. Mater. Lett. 4: 169-173. https://doi.org/10.5185/amlett.2012.6374
  17. Jayaseelan C., Ramkumar R., Rahuman A. A., Perumal P., (2013), Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Indus. Crops and Products. 45: 423-429. https://doi.org/10.1016/j.indcrop.2012.12.019
  18. Vidya C., Hiremath S., Chandraprabha M. N., Antonyraj M. A. L., Gopala I. V., Jain A., Bansal K., (2013), Green synthesis of ZnO nanoparticles by calotropisgigantea. Int. J. Curr. Eng. Technol. 1: 118-120.
  19. Hudlikar M., Joglekar S., Dhaygude M., Kodama K., (2012), Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J. Nanoparticle Res. 14: 865-870. https://doi.org/10.1007/s11051-012-0865-x
  20. Senapati U. S., Sarkar D., (2014), Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J. Phys. 88: 557-562. https://doi.org/10.1007/s12648-014-0456-z
  21. Senapati U. S., Jha D. K., Sarkar D., (2013), Green synthesis and characterization of ZnS nanoparticles. Res. J. Phys. Sci. 1: 1-6.
  22. Tiwari A., Khan S. A., Kher R. S., Dhoble S. J., (2014), Synthesis, characterization and optical studies of highly luminescent ZnS nanoparticles associated with hypromellose matrix as a green and novel stabilizer. Lumines. 29: 637-641. https://doi.org/10.1002/bio.2597
  23. Zhang, M., Rong, M. Z., (2019), Nanocomposites based on carbon nanotubes and polymer matrices. Polym. Rev. 59: 1-5.
  24. Patton R. D., Pittman Jr. C. U., Wang L., Hill J. R., (1999), Vapor-grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Composites A. 30: 1081-1091. https://doi.org/10.1016/S1359-835X(99)00018-4
  25. Yu Q.-C., Wan H., (2012), Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse laser irradiation. Wuji Cailiao Xuebao/J. Inorg. Mater. 27: 157-161. https://doi.org/10.3724/SP.J.1077.2012.00157
  26. Liu Y., Lu Z., Chen X., Wang D., Liu J., Hu L., (2009), Study on phenolic-resin/carbon-fibre ablation composites modified with polyhedral oligomeric silsesquioxanes. Proceed. 4th IEEE Int. Conf. Nano/Micro Eng. Molec. Sys. (pp. 605-608). Shenzhen, China.
  27. Bahramian A. R., Kokabi M., (2009), Ablation mechanism of polymer layered silicate nanocomposite heat shield. J. Hazard. Mater. 166: 445-454. https://doi.org/10.1016/j.jhazmat.2008.11.061
  28. Srikanth I., Daniel A., Kumar S., (2010), Nano silica-modified carbon-phenolic composites for enhanced ablation resistance. Scripta Mater. 63: 200-203. https://doi.org/10.1016/j.scriptamat.2010.03.052
  29. Koo J. H., Natali M., Tate J. S., Allcorn E., (2013), Polymer nanocomposites as ablative materials: A comprehensive review. Int. J. Energetic Mater. Chem. Propulsion. 12: 199-162. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2013005383
  30. Natali M., Monti M., Kenny J., Torre L., (2011), Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rate-mixing technique. J. Appl. Polym. Sci. 120: 2632-2640. https://doi.org/10.1002/app.33494
  31. Natali M., Monti M., Kenny J. M., Torre L., (2011), A nanostructured ablative bulk moulding compound: Development and characterisation. Composites A. 42: 1197-1204. https://doi.org/10.1016/j.compositesa.2011.04.022
  32. Natali M., Monti M., Puglia D., Kenny J. M., Torre L., (2012), Ablative properties of carbon black and MWNT/phenolic composites: A comparative study. Composites A. 43: 174-182. https://doi.org/10.1016/j.compositesa.2011.10.006
  33. Wang C., Cheng H., Hong C., Zhang X., Zeng T., (2018), Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: Facile preparation, properties, and application to thermal protection. Compos. Part A: Appl. Sci. Manufac. 112: 81-90. https://doi.org/10.1016/j.compositesa.2018.05.026
  34. Zhang M., Rong M. Z., (2019), Nanoparticle-reinforced polymer nanocomposites. Polym. Rev. 59: 44-48.
  35. Taghiyari H. R., (2014), Effect of metal nanoparticles on hardness in particleboard. Int. J. Nano Dimens. 5: 379-386.
  36. Beiranvand M., Farhadi S., Mohammadi A., (2019), Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity. Int. J. Nano Dimens. 10: 180-194.
  37. Sadeghi B., (2018), Controlled growth and characterisation of Ag/ZnO nano tetrapods for humidity sensing. Chem. High Throughput Screen. 21: 462-467. https://doi.org/10.2174/1386207321666180717120417
  38. Ghane M., Sadeghi B., Jafari A. R., Paknejhad A., (2010), Synthesis and characterization of a bi-Oxide nanoparticle ZnO/CuO by thermal decomposition. Int. J. Nano Dimens. 1: 33-40.
  39. Huang Y., Li D., Wang X., Yan L., Xiao Z., (2012), Carbon-nanotube-modified phenol-formaldehyde resins for use as high-performance adhesives. J. Mater. Sci. 47: 5416-5423.
  40. Cheng Y., Zhang Y., Yang L., Wang H., (2019), Quantum dot-based polymer nanocomposites for optoelectronic applications. Nanos. Res. Lett. 14: 28-33.
  41. Yang X., Zeng X., Han G., Sui D., Song X., Zhang Y., (2020), Preparation and performance of porous Carbon nanocomposite from renewable phenolic resin and halloysite nanotube. Nanomater. 10: 1703-1705. https://doi.org/10.3390/nano10091703
  42. Zhang M., Rong M. Z., (2019), Nanocomposites based on carbon nanotubes and polymer matrices. Polym. Rev. 59: 1-5.
  43. Maria A., (2019), Nanoparticle-reinforced polymer. Polymers. 11: 625-629. https://doi.org/10.3390/polym11040625
  44. Vella Durai S. C., Kumar E., Indiara R., Muthuraj D., (2020), Preparation and investigation of structural, optical, and conductivity properties of polyaniline dioxide nanocomposites. J. Ovonic Res. 16: 345-348. https://doi.org/10.15251/JOR.2020.166.345
  45. Sadeghi B., (2018), Synthesis and characterisation of ultrafine Ag/ZnO nanotetrapods (AZNTP) for environment humidity sensing. J. Env. Health Eng. 5: 115-119. https://doi.org/10.15171/ajehe.2018.15
  46. Bankar A., Joshi B., Ravi Kumar A., Zinjarde S., (2010), Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B. Biointerfaces. 80: 45-49. https://doi.org/10.1016/j.colsurfb.2010.05.029
  47. Bankar A., Joshi B., Ravi Kumar A., Zinjarde S., (2010), Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 368: 58-63. https://doi.org/10.1016/j.colsurfa.2010.07.024
  48. Zhou G. J., Li S. H., Zhang Y. C., Fu Y. Z., (2014), Biosynthesis of CdS nanoparticles in banana peel extract. J. Nanosc. Nanotechnol. 14: 4437-4442. https://doi.org/10.1166/jnn.2014.8259
  49. Happi Emaga T., Robert C., Ronkart S. N., Wathelet B., Paquot M., (2008), Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Biores. Technol. 99: 4346-4354. https://doi.org/10.1016/j.biortech.2007.08.030
  50. Verma D., Kole A. K., Kumbhakar P., (2015), Red shift of the band-edge photoluminescence emission and effects of annealing and capping agent on structural and optical properties of ZnO nanoparticles. J. Alloys and Comp. 625: 122-130. https://doi.org/10.1016/j.jallcom.2014.11.102
  51. Singh B., Chauhan N., (2009), Modification of psyllium polysaccharides for use in oral insulin delivery. Food Hydrocolloids. 23, 928-935. https://doi.org/10.1016/j.foodhyd.2008.06.004
  52. Basak P., Adhikari B., (2009), Poly (vinyl alcohol) hydrogels for pH dependent colon targeted drug delivery. J. Mater. Sci: Mater. Medic. 20: 137-146. https://doi.org/10.1007/s10856-008-3496-0
  53. Kumar K., Kaith B. S., Mittal H., (2010), Utilization of acrylamide and natural polysaccharide based polymeric networks in PH controlled released of 5-Amino salicylic acid. J. Chil. Chem. Soc. 55: 522-526. https://doi.org/10.4067/S0717-97072010000400025
  54. Xiong J., Xiong S., Guo Z., Yang M., Chen J., Fan H., (2012), Ultrasonic dispersion of nano TiC powders aided by tween 80 addition. Ceram. Int. 38: 1815-1821. https://doi.org/10.1016/j.ceramint.2011.10.004