Adsorption of Ibuprofen by an Iron-doped Silicon Carbide Graphene monolayer: DFT exploration of drug delivery insights

Document Type : Reasearch Paper

Authors

1 Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran.

2 Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran.

Abstract

Drug delivery insights were provided by performing density functional theory (DFT) calculations to investigate the adsorption of a non-steroidal anti-inflammatory drugs; ibuprofen (IBU), by an iron-doped silicon carbide (FSiC) graphene monolayer. In this regard, the single models of IBU, SiC, and FSiC were optimized to obtain their stabilized geometries and features, in which a remarkable achievement was found for the enhanced FSiC graphene monolayer towards the original SiC graphene monolayer for interacting with the IBU substance. Subsequently, the formation of interacting complex of IBU and each of SiC and FSiC graphene monolayers was investigated by re-optimizing the bimolecular models to obtain IBU@SiC and IBU@FSiC complexes with interaction energies of -1.44 kcal/mol and -43.14 kcal/mol, respectively. Additionally, a remarkable role of iron-doped region for managing the interactions between FSiC and IBU counterparts was found. The existence of O…Fe interaction in the formation IBU@FSiC complex was affirmed by the results of quantum theory of atoms in molecules (QTAIM) analyses. The electronic molecular orbitals results indicated a softer FSiC graphene monolayer than SiC graphene monolayer for a better participation in interactions with the IBU substance. Comparing the changes of density of states (DOS) diagrams and energy gap (GAP) distances of frontier molecular orbital levels from the single graphene monolayer to the complex state have been revealed an easier IBU detection by the FSiC than the SiC. As a final note, a suitability of IBU@FSiC complex formations was found for working as a proposed drug delivery platform upon further investigation in this field.

Highlights

 

Keywords

Main Subjects


 

  1. Bhattacharya K., Shamkh I. M., Khan M. S., Lotfy M. M., Nzeyimana J. B., Abutayeh R. F., Hamdy N. M., Hamza D., Chanu N. R., Khanal P., Bhattacharjee A., (2022), Multi-epitope vaccine design against monkeypox virus via reverse vaccinology method exploiting immunoinformatic and bioinformatic approaches. Vaccines. 10: 2010.
    https://doi.org/10.3390/vaccines10122010
  2. Rabiee F., Eghbalifard N., Fathi M., Rajabi H., Riazi S. S., (2023), Evaluation of the potential of the microRNAs to predict chemotherapy resistance in breast cancer patients: a systemic review with meta-analysis. Int. J. Sci. Res. Dent. Med. Sci. 5: 135-140.
  3. Habibzadeh S., Ghoncheh Z., Kabiri P., Mosaddad S. A., (2023), Diagnostic efficacy of cone-beam computed tomography for detection of vertical root fractures in endodontically treated teeth: A systematic review. BMC Med. Imag. 23: 68-73.
    https://doi.org/10.1186/s12880-023-01024-3
  4. Aldulaimi A. K., Jawad M. J., Hassan S. M., Alwan T. S., Azziz S. S., Bakri Y. M., (2022), The potential antibacterial activity of a novel amide derivative against gram-positive and gram-negative bacteria. Int. J. Drug Deliv. Technol. 12: 510-515.
  5. Ghadami P., Mehrafar N., Rajabi H., Rabiee F., Eghbalifard N., (2023), Evaluation of the effect of mesenchymal stem cells on breast cancer migration and metastasis: A systematic review and meta-analysis. Int. J. Sci. Res. Dent. Med. Sci. 5: 164-170.
  6. Azziz S. S., Aldulaimi A. K., Aowda S. A., Bakri Y. M., Majhool A. A., Ibraheem R. M., Aldulaimi T. K., Idris H., Wong C. F., Awang K., Litaudon M., (2020), Secondary metabolites from leaves of polyalthia lateriflora and their antimicrobial activity. Int. J. Pharm. Sci. Res. 11: 4353-4358.
    https://doi.org/10.26452/ijrps.v11i3.2652
  7. Klegeris A., McGeer P. L., (2005), Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr. Alzheimer. Res. 2: 355-365.
    https://doi.org/10.2174/1567205054367883
  8. Ribeiro H., Rodrigues I., Napoleão L., Lira L., Marques D., Veríssimo M., Andrade J. P., Dourado M., (2022), Non-steroidal anti-inflammatory drugs (NSAIDs), pain and aging: Adjusting prescription to patient features. Biomed. Pharmacother. 150: 112958-112966.
    https://doi.org/10.1016/j.biopha.2022.112958
  9. Kasim S., Abdulaziz N., Jasim M., Mustafa Y., (2023), Resveratrol in cancer chemotherapy: Is it a preventer, protector, or fighter? Eurasian Chem. Commun. 5: 576-587.
  10. Ziesenitz V. C., Welzel T., van Dyk M., Saur P., Gorenflo M., van den Anker J. N., (2022), Efficacy and safety of NSAIDs in infants: a comprehensive review of the literature of the past 20 years. Pediat. Drugs. 24: 603-655.
    https://doi.org/10.1007/s40272-022-00514-1
  11. Panchal N. K., Sabina E. P., (2023), Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food. Chem. Toxicol. 172: 113598.
    https://doi.org/10.1016/j.fct.2022.113598
  12. Atrushi K. S., Ameen D. M., Abdulrahman S. H., Abachi F. T., (2023), Density functional theory, ADME, and molecular docking of some anthranilic acid derivatives as cyclooxygenase inhibitors. J. Med. Chem. Sci. 6: 1943-1952.
  13. Mirzaei M., Harismah K., Soleimani M., Mousavi S., (2021), Inhibitory effects of curcumin on aldose reductase and cyclooxygenase-2 enzymes. J. Biomol. Struct. Dyn. 39: 6424-630.
    https://doi.org/10.1080/07391102.2020.1800513
  14. Pardridge W. M., (2022), A historical review of brain drug delivery. Pharmaceutics. 14: 1283-1288.
    https://doi.org/10.3390/pharmaceutics14061283
  15. Aldulaimi A. K., Idan A. H., Majhool A. A., Jawad M. J., Khudhair Z. H., Hassan S. M., Azziz S. S., (2022), Synthesis of new antibiotic agent based on mannich reaction. Int. J. Drug Deliv. Technol. 12: 1428-1432.
    https://doi.org/10.25258/ijddt.12.3.83
  16. Almijalli M., Ibrahim M., Saad A., Saad M., (2021), Chemotaxis model for drug delivery using turing's instability and non-linear diffusion. Appl. Sci. 11: 4979-4985.
    https://doi.org/10.3390/app11114979
  17. Ding M., Liu W., Gref R., (2022), Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv. Drug Deliver. Rev. 190: 114496.
    https://doi.org/10.1016/j.addr.2022.114496
  18. Saadh M. J., Abdullaev S. S., Falcon-Roque J. M., Cosme-Pecho R. D., Castillo-Acobo R. Y., Obaid M., Mohany M., Al-Rejaie S. S., Mirzaei M., Da'i M., Harismah K., (2023), Sensing functions of oxidized forms of carbon, silicon, and silicon-carbon nanocages towards the amantadine drug: DFT assessments. Diam. Relat. Mater. 137: 110137.
    https://doi.org/10.1016/j.diamond.2023.110137
  19. Hosseini S. M. H., Naimi-Jamal M. R., Hassani M., (2022), Preparation and characterization of mebeverine hydrochloride niosomes as controlled release drug delivery system. Chem. Methodol. 6: 591-603.
  20. Sadjadi M. S., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes,[NSOX (NPCl2)2]; X= F(1), X= Cl(2). J. Mol. Struct. THEOCHEM. 817: 27-33.
    https://doi.org/10.1016/j.theochem.2007.04.015
  21. Nikfar Z., Shariatinia Z., (2020), Tripeptide arginyl-glycyl-aspartic acid (RGD) for delivery of cyclophosphamide anticancer drug: A computational approach. Int. J. Nano Dimens. 11: 312-336.
  22. Mirzaei M., Hadipour N., Gulseren O., (2021), Cubane cluster surface for pyrimidine nucleobases relaxation: DFT approach. Int. J. Nano Dimens. 12: 135-144.
  23. Liu R., Luo C., Pang Z., Zhang J., Ruan S., Wu M., Wang L., Sun T., Li N., Han L., Shi J., (2023), Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin. Chem. Lett. 34: 107518.
    https://doi.org/10.1016/j.cclet.2022.05.032
  24. Fekri M. H., Bazvand R., Soleymani M., Razavi Mehr M., (2020), Adsorption of metronidazole drug on the surface of nano fullerene C60 doped with Si, B and Al: A DFT study. Int. J. Nano Dimens. 11: 346-354.
  25. Esfahani S., Akbari J., Soleimani-Amiri S., Mirzaei M., Ghasemi Gol A., (2023), Assessing the drug delivery of ibuprofen by the assistance of metal-doped graphenes: Insights from density functional theory. Diam. Relat. Mater. 135: 109893.
    https://doi.org/10.1016/j.diamond.2023.109893
  26. Tian T., Li Y., Lin Y., (2022), Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res. 10: 40-46.
    https://doi.org/10.1038/s41413-022-00212-1
  27. Pourjafari M., Ghane M., Kaboosi H., Sadeghi B., Rezaei A., (2022), Antibacterial properties of Ag-Cu alloy nanoparticles against multidrug-resistant pseudomonas aeruginosa through inhibition of quorum sensing pathway and virulence-related genes. J. Biomed. Nanotechnolo. 18: 1196-1204.
    https://doi.org/10.1166/jbn.2022.3331
  28. Razaq A., Bibi F., Zheng X., Papadakis R., Jafri S. H., Li H., (2022), Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials. 15: 1012-1019.
    https://doi.org/10.3390/ma15031012
  29. Zhang F., Yang K., Liu G., Chen Y., Wang M., Li S., Li R., (2022), Recent advances on graphene: Synthesis, properties and applications. Compos. A. 160: 107051-107058.
    https://doi.org/10.1016/j.compositesa.2022.107051
  30. Tagani M. B., (2023), Si9C15 monolayer: A silicon carbide allotrope with remarkable physical properties. Phys. Rev. B. 107: 085114.
    https://doi.org/10.1103/PhysRevB.107.085114
  31. Kadhim M. M., Hachim S. K., Alomar S., Taban T. Z., Abdullaha S. A. H., Alnasoud N., (2023), Introducing a new type of drug delivery system based on the silicon carbide monolayer. Silicon. 15: 4317-4323.
    https://doi.org/10.1007/s12633-023-02346-1
  32. Pari A. A., Yousefi M., Samadi S., Allahgholi Ghasri M. R., Torbati M. B., (2021), Structural analysis of an iron-assisted carbon monolayer for delivery of 2-thiouracil. Main Group Chem. 20: 653-661.
    https://doi.org/10.3233/MGC-210079
  33. Saadh M. J., Amin A. H., Farhadiyan S., Sadeghi M. S., Shahrtash S. A., Maaliw III R. R., Hanaf A. S., Kiasari B. A., Da'i M., Mirzaei M., Akhavan-Sigari R., (2023), Sensing functions of an iron-doped boron nitride nanocone towards acetaminophen and its thio/thiol analogs: A DFT outlook. Diam. Relat. Mater. 133: 109749-109756.
    https://doi.org/10.1016/j.diamond.2023.109749
  34. Esfahani F. M., Balali E., Hashemi S. S., Khadivi R., Nayini M. M., Voung B., (2022), Investigating an iron-doped fullerene cage for adsorption of niacin (vitamin B3): DFT analyses of bimolecular complex formations. Comput. Theor. Chem. 1214: 113768-113774.
    https://doi.org/10.1016/j.comptc.2022.113768
  35. Wei H., Moria H., Nisar K. S., Ghandour R., Issakhov A., Sun Y. L., Kaood A., Youshanlouei M. M., (2021), Effect of volume fraction and size of Al2O3 nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube. Case Stud. Therm. Eng. 25: 100948.
    https://doi.org/10.1016/j.csite.2021.100948
  36. Kareem H. A., Zaidi M., Ameen Baqer A., Hachim S. K., Ghazuan T., Kadhim Alasedi K., Hameed N. M., Kareem Obaid Aldulaim A., Kadhem Abid M., Hussein M. J., Dahesh S. M. A., (2022), Synthesis and characterization of CoFe2O4 nanoparticles and its application in removal of reactive violet 5 from water. J. Nanostruct. 12: 521-528.
  37. Patra I., Mohammed F. H., Aldulaimi A. K. O., Khudhair D. A., Mustafa Y. F., (2022), A novel and efficient magnetically recoverable copper catalyst [MNPs-guanidine-bis (ethanol)-Cu] for Pd-free sonogashira coupling reaction. Synt. Commun. 52: 1856-1866.
    https://doi.org/10.1080/00397911.2022.2116718
  38. Mohammed H. T., Kadhim Alasedi K., Ruyid R., Abed Hussein S., Latif Jarallah A., Dahesh S. M. A., Sultan M. Q., Salman Z. N., Bashar B. S., Kareem Obaid Aldulaimi A., Obaid M. A., (2022), ZnO/Co3O4 nanocomposites: novel preparation, characterization, and their performance toward removal of antibiotics from wastewater. J. Nanostruct. 12: 503-509.
  39. Izadi M., Sheremet M., Hajjar A., Galal A. M., Mahariq I., Jarad F., Hamida M. B., (2023), Numerical investigation of magneto-thermal-convection impact on phase change phenomenon of nano-PCM within a hexagonal shaped thermal energy storage. Appl. Therm. Eng. 223: 119984.
    https://doi.org/10.1016/j.applthermaleng.2023.119984
  40. Gulomov J., Accouche O., (2022), Gold nanoparticles introduced ZnO/perovskite/silicon heterojunction solar cell. IEEE Access. 10: 119558-119565.
    https://doi.org/10.1109/ACCESS.2022.3221875
  41. Rabiee F., Mehralizadeh N., Jalalinezhad S., Ebrahimi Z., Jamali S., (2022), Evaluation of the effects of nanoparticles in the treatment of diabetes mellitus: a systematic review and meta-analysis. Int. J. Sci. Res. Dent. Med. Sci. 4: 191-195.
  42. El Hassan N., Jabbour K., Fakeeha A. H., Nasr Y., Naeem M. A., Alreshaidan S. B., Al-Fatesh A. S., (2023), Production of carbon nanomaterials and syngas from biogas reforming and decomposition on one-pot mesoporous nickel alumina catalysts. Alexandria Eng. J. 63: 143-155.
    https://doi.org/10.1016/j.aej.2022.07.056
  43. Afshari A., Mosaddad S. A., Alam M., Abbasi K., Darestani M. N., (2022), Biomaterials and biological parameters for fixed-prosthetic implant-supported restorations: A review study. Adv. Mater. Sci. Eng. 2022: 2638166.
    https://doi.org/10.1155/2022/2638166
  44. Salehi Kahrizsangi F., Mehrafar N., Pezhman Ghadami F., Rabiee F., Shariati Y., (2022), Evaluation of the clinical outcome of nab-paclitaxel on multiple primary malignancies: A systematic review and meta-analysis. Int. J. Sci. Res. Dent. Med. Sci. 4: 183-190.
  45. Aldulaim A. K. O., Hameed N., Hamza T. A., Abed A. S., (2022), The antibacterial characteristics of fluorescent carbon nanoparticles modified silicone denture soft liner. J. Nanostruct. 12: 774-781.
  46. Sabbagh Seddigh S., Fazlzadeh A., Sabbagh Seddigh S., (2023), Evaluation of the diagnostic accuracy of carbon manoparticle suspensions in sentinel lymph node biopsy of breast cancer: A systematic review and meta-analysis. Int. J. Sci. Res. Dent. Med. Sci. 5: 154-163.
  47. Patra J. K., Das G., Fraceto L. F., Campos E. V., Rodriguez-Torres M. D., Acosta-Torres L. S., Diaz-Torres L. A., Grillo R., Swamy M. K., Sharma S., Habtemariam S., (2018), Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16: 1-33.
    https://doi.org/10.1186/s12951-018-0392-8
  48. Belhachem A., Amara N., Belmekki H., Yahia Y., Cherifi Z., Amiar A., Bengueddach A., Meghaba, R., Toumi H., (2023), Synthesis, characterization and anti-inflammatory activity of an alginate-zinc oxide nanocomposite. Asian J. Nanosci. Mater. 3: 173-185.
  49. Asghari N., Houshmand S., Rigi A., Mohammadzadeh V., Piri Dizaj M., Mousavian Hiagh Z. S., (2023), PEGylated cationic nano-niosomes formulation containing herbal medicine curcumin for drug delivery to MCF-7 breast cancer cells. Eurasian Chem. Commun. 5: 556-568.
  50. Naderi E., Mirzaei M., Saghaie L., Khodarahmi G., Gulseren O., (2017), Relaxations of methylpyridinone tautomers at the C60 surfaces: DFT studies. Int. J. Nano Dimens. 8: 124-131.
  51. Golipour-Chobar E., Salimi F., Ebrahimzadeh-Rajaei G., (2022), Sensing of lomustine drug by pure and doped C48 nanoclusters: DFT calculations. Chem. Methodol. 6: 790-800.
  52. Kamel Attar Kar M. H., Yousefi M., (2022), Interaction of a conical carbon scaffold with the thio-substituted model of fluorouracil towards approaching the drug delivery purposes. Main Group Chem. 21: 725-735.
    https://doi.org/10.3233/MGC-210174
  53. Rahimi R., Solimannejad M., (2023), Covalent triazine-based monolayer with dual application in sensing and delivery of mercaptopurine anticancer drug: A periodic DFT study. Mol. Phys. 121: e2231093.
    https://doi.org/10.1080/00268976.2023.2231093
  54. Gaussian 09, Revision D.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., (2016), Gaussian Inc., Wallingford CT.
  55. Bader R. F., Nguyen-Dang T. T., (1981), Quantum theory of atoms in molecules-Dalton revisited. Adv. Quant. Chem. 14: 63-124.
    https://doi.org/10.1016/S0065-3276(08)60326-3
  56. Davidson E. R., Chakravorty S. J., (1994), A possible definition of basis set superposition error. Chem. Phys. Lett. 217: 48-54.
    https://doi.org/10.1016/0009-2614(93)E1356-L
  57. Javadi N., Fakhraian H., (2023), Investigation of enantiomeric separation of tiletamine drug using computational chemistry methods. Eurasian Chem. Commun. 5: 661-674.
  58. Dehaghani M. Z., Salmankhani A., Mashhadzadeh A. H., Habibzadeh S., Abida O., Saeb M. R., (2021), Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis. Eng. Fract. Mech. 244: 107552.
    https://doi.org/10.1016/j.engfracmech.2021.107552
  59. Iorhuna F., Ayuba A., Nyijime A., Hussain M., Ibrahim M., (2023), Comparative study of halogen substituted isocyanatophosphine as an adsorptive inhibitor on Al (110) crystal surface, using density functional theory. Prog. Chem. Biochem. Res. 6: 211-228.
  60. Dehaghani M. Z., Molaei F., Yousefi F., Sajadi S. M., Esmaeili A., Mohaddespour A., Farzadian O., Habibzadeh S., Mashhadzadeh A. H., Spitas C., Saeb M. R., (2021), An insight into thermal properties of BC3-graphene hetero-nanosheets: a molecular dynamics study. Sci. Rep. 11: 23064-23069.
    https://doi.org/10.1038/s41598-021-02576-6