Chemical synthesis of Lead Iodide nanoparticles for photovoltaic and optoelectronic device applications

Document Type : Reasearch Paper

Authors

1 Department of Physics, Institute of Engineering and Technology, Srinivas University, Mukka, Surathkal, Mangalore- 574146, Karnataka, India.

2 Department of Nanotechnology, Institute of Engineering and Technology, Srinivas University, Mukka, Surathkal, Mangalore - 574146, Karnataka, India.

Abstract

In the present study, highly recommended lead iodide (PbI2) nanoparticles and thin films based on PbI2 nanoparticles have been prepared for optoelectronics and solar cell applications. PbI2 is an anisotropic p-type semiconductor with a band gap of 2.57 eV at room temperature. PbI2 material has large potential applications in optical detector, digital X-ray imaging, gamma ray detector, etc. PbI2 layered semiconductor nanoparticles were stabilized using thioglycerol and investigated by Ultraviolet-Visible (UV-Vis) absorption spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The chemical bath deposition (CBD) method was used to deposit PbI2 thin films on fluorine-doped tin oxide (FTO) glass substrates. These films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping and atomic force microscopy (AFM). Thicknesses of PbI2 thin films were estimated using a laser profilometer. The blue shift was observed in UV-Vis absorption and PL spectra of PbI2 nanoparticles. TEM was used to obtain quantitative information on the PbI2 particle size distribution. Due to the low solubility of PbI2 in acetonitrile, approximately 20-30 nm sized circular particles are obtained. The variation of 18 Å was observed in the lateral dimensions of PbI2 nanoparticles. Pb4fXPS core level appeared at 138.5 eV corresponding to PbI2. There is no report published wherein the PbI2 nanoparticles and the PbI2 thin films were prepared by the aqueous chemical method and the CBD method respectively. In this study, the characterization results of PbI2 nanoparticles and PbI2 thin films were better than many other materials.

Highlights

 

Keywords

Main Subjects


 

[1] Brus L. E., (1986), Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 90: 2555-2560.
https://doi.org/10.1021/j100403a003
[2] Henglein A., (1987), Mechanism of reactions on colloidal microelectrodes and size quantization effects electrochemistry II. Topics in Current Chem.143: 113-180.
https://doi.org/10.1515/9783112539248-008
[3] Alivisatos A. P., (1996), Semiconductor clusters, nanocrystals and quantum dots. Science. 271: 933-937.
https://doi.org/10.1126/science.271.5251.933
[4] Darekar M. S., Praveen B. M., (2022), Synthesis and characterization of nanoparticles ofsemiconducting metal sulphide and their application. Phys. Scr. 97: 065805.
https://doi.org/10.1088/1402-4896/ac698f
[5] Darekar M. S., Praveen B. M., (2023), High photosensitivity nanocrystalline p-Cu2S/n-FTO heterojunction photodetectors prepared by dip coating method. J. Modern Nanotechnol. 3. DOI:10.53964/jmn.2023001
https://doi.org/10.53964/jmn.2023001
[6] Darekar M. S., Praveen B. M., (2023), Effects of heat treatment in air atmosphere on dip coating deposited CdS thin films for photo sensor applications. J. Modern Nanotechnol. 3. 2-9.
https://doi.org/10.53964/jmn.2023002
[7] Bangal M., Ashtaputre S., Marathe S., Ethiraj A., Hebalkar N., Gosavi S. W., Urban J., Kulkarni S. K., (2005), Semiconducting nanoparticles. Springer, Hyperfine Interact. 160: 81-94.
https://doi.org/10.1007/s10751-005-9151-y
[8] Azari B., Pourahmad A., Sadeghi B., Mokhtary M., Preparation and photocatalytic study of SiO2 /CuS coreshell nanomaterial for degradation of methylene blue dye. Nanoscale. 6:103-114.
[9] Sandroff C. J., Hwang D. M., Chung W. M., (1986), Carrier confinement and special crystallite dimensions in layered semiconductor colloids. Phys. Rev. B33: 5953-5958.
https://doi.org/10.1103/PhysRevB.33.5953
[10] Dag I., Lifshitz E., (1996), Dynamics of recombination processes in PbI2 nanocrystal embedded in porous silica films. J. Phys. Chem. 100: 8962-8972.
https://doi.org/10.1021/jp952863y
[11] Sandroff C. J., Kelty S. P., Hwang D. M., (1986), Clusters in solution: Growth and optical properties of layered semiconductors with hexagonal and honeycombed structures. J. Chem. Phys. 85: 5337-5341.
https://doi.org/10.1063/1.451677
[12] Sabry N., Mohammed M. I., Yahia I. S., (2019), Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications. Mater. Res. Express 6: 115339-115345.
https://doi.org/10.1088/2053-1591/ab4c24
[13] Sheng C.-X., Zhai Y., Olejnik E., Zhang C., Sun D., Vardeny Z. V., (2015), Laser action and Photoexcitations dynamics in PbI2 films. Opt. Mater. Express 5: 530-537.
https://doi.org/10.1364/OME.5.000530
[14] Liu J., Sun Y., Zhou Y., Zhang C., Wang X., Wang L., Xiao M., (2019), Few Layer PbI2 nanoparticle: A 2D semiconductor with lateral quantum confinement. J. Phys. Chem. Lett. 10: 7863-7869.
https://doi.org/10.1021/acs.jpclett.9b03009
[15] Popov G., Mattinen M., Hatanpaa T., Vehkamaki M., Kemell M., Mizohata K., Raisanen J., Ritala M., Leskela M., (2019), Atomic layer deposition of PbI2 thin films. Chem. Mater. 31: 1101-1109.
https://doi.org/10.1021/acs.chemmater.8b04969
[16] Shkir M., Yahia I. S., Ganesh V., Bitla Y., Ashraf I. M., Kaushik A., AlFaify S., (2018), A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci. Rep. 8: 13806-13811.
https://doi.org/10.1038/s41598-018-32038-5
[17] Schluter I. CH., Schluter M., (1974), Electronic structure and optical properties of PbI2. Phys. Rev. B. 9: 1652-1656.
[18] Gahviller C., Harbecke G., (1969), Excitonic effects in the electro reflectance of lead iodide. Phys. Rev. 185: 1141-1147.
https://doi.org/10.1103/PhysRev.185.1141
[19] Harbeche G., Tosatti E., (1975), Root Cause Analysis Rev. 36: 40-45.
[20] Minder R., Ottaviani G., Canali C., (1976), Charge transport in layer semiconductors. J. Phys. Chem. Solids 37: 417-424.
https://doi.org/10.1016/0022-3697(76)90023-8
[21] Manfredotti C., Murri R., Quirini A., Vasanelli L., (1977), Proc. 1976 IEEE Nuclear Science Symposium February.
[22] Shkir M., AlFaify S., (2019), Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. 34: 2765-2774.
https://doi.org/10.1557/jmr.2019.121
[23] Sengupta A., Mandal K. C., Zhang J. Z., (2000), Ultrafast electronic relaxation dynamics in layered Iodide semiconductors: A comparative study of colloidal BiI3 and PbI2 nanoparticles. J. Phys. Chem. B. 104: 9396-9403.
https://doi.org/10.1021/jp000980+
[24] Mohammed S. I., Ahmed N. M., Al-Douri Y., Hashim U., (2014), Structural properties of PbI2 thin film. Adv. Mater. Res. 879: 175-179.
https://doi.org/10.4028/www.scientific.net/AMR.879.175
[25] Nozue Y., Tang Z. K., Goto T., (1990), Excitons in PbI2 clusters incorporated into zeolite cages. Solid State Commun. 73: 531-534.
https://doi.org/10.1016/0038-1098(90)91043-G
[26] Kaviyarasu K., Sajan D., Selvakumar M. S., Augustine Thomas S., Prem Anand D., (2012), A facile hydrothermal route to synthesize novel PbI2 nanorods. J. Phys. Chem. Solids 73: 1396-1400.
https://doi.org/10.1016/j.jpcs.2012.06.005
[27] Shkir M., Yahia I. S., AlFaify S., Abutalib M. M., Muhammad S., (2016), Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies. J. Mol. Struct. 1110: 83-90.
https://doi.org/10.1016/j.molstruc.2016.01.014
[28] Ngqoloda S., Arendse C. J., Muller T. F., Magubane S. S., Oliphant C. J., (2020), Controlled deposition of Lead Iodide and Lead Chloride thin films by low-pressure chemical vapor deposition. Coat. 10: 1208-1212.
https://doi.org/10.3390/coatings10121208
[29] Ghosh T., Bandyopadhyay S., Roy K. K., Kar S., Lahiri A. K., Maiti A. K., Goswami K., (2008), Optical and structural properties of lead iodide thin films prepared by vacuum evaporation method. Cryst. Res. Technol. 43: 959-963.
https://doi.org/10.1002/crat.200811160
[30] Liang Y., Yao Y., Zhang X., Hsu W.-L., Gong Y., Shin J., Takeuchi I., (2016), Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition. AIP Adv. 6: 015001-015006.
https://doi.org/10.1063/1.4939621
[31] Li W., Yang J., Jiang Q., Li R., Zhao L., (2018), Electrochemical deposition of PbI2 for perovskite solar cells. Sol. Energy. 159: 300-305.
https://doi.org/10.1016/j.solener.2017.10.077
[32] Fornaro L., Saucedo E., Mussio L., Yerman L., Ma X., Burger A., (2001), Lead iodide film deposition and characterization. Nuclear Inst. Methods in Phy. Res. A. 458: 406-412.
https://doi.org/10.1016/S0168-9002(00)00933-5
[33] Acuna D., Krishnan B., Shaji S., Sepulveda S., Menchaca J. L., (2016), Growth and properties of lead iodide thin films by spin coating. Bull. Mater. Sci. 39: 1453-1460.
https://doi.org/10.1007/s12034-016-1282-z
[34] Condeles J. F., Mulato M., (2011), Influence of solution rate and substrate temperature on the properties of lead iodide films deposited by spray pyrolysis. J. Mater. Sci. 46: 1462-1468.
https://doi.org/10.1007/s10853-010-4947-9
[35] Nikam C. P., Gosavi S. R., (2014), Characterization of nanocrystalline CdS thin films deposited on FTO by CBD for photo sensor applications. Adv. Nat. Appl. Sci. 5: 267-272.
[36] Manjulavalli T. E., Kannan A. G., (2015), Effects of deposition time on structural, optical and electrical properties of chemically deposited Cu2S thin films. Int. J. Chemtech. Res. 8: 607-616.
[37] Khimani A. J., Chaki S. H., Malek T. J., Tailor J. P., Chauhan S. M., Deshpande M. P., (2018), Cadmium Sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques: A comparative study. Mater. Res. Express 5: 036406-036411.
https://doi.org/10.1088/2053-1591/aab28d
[38] Okorie O., Buba A., Ramalan A., (2017), Optical and dielectric properties of cadmium sulphide thin film grown using chemical bath deposition technique. IOSR: J. Appl. Phys. 9: 82-89.
[39] Yücel E., Kahraman S., Güder H., (2015), Effects of different annealing atmospheres on the properties of cadmium sulfide thin films. Mater. Res. Bull. 68: 227-233.
https://doi.org/10.1016/j.materresbull.2015.03.067
[40] Mahdi M. A., Kasem S. J., Hassen J. J., Swadi A. A., A1-Ani S. K. J., (2009), Structural and optical properties of chemical deposition CdS thin films. Int. J. Nanoelectron. Mater. 2: 163-172.
[41] Chowdhury R. I., Hossen M. A., Mustafa G., Hussain S., Rahman S. N., Farhad S. F., Murata K., Tambo T., Islam A. B., (2010), Characterization of chemically deposited cadmium sulfide thin films. Int. J. Mod. Phys. B. 24: 5901-5911.
https://doi.org/10.1142/S0217979210055147
[42] Ismail R. A., Al Samarai A. M., Muhammed A. M., (2019), High-performance nanostructured p-Cu2S/n-Siphotodetector prepared by chemical bath deposition technique. J. Mater. Sci. Mater. Electron. 30: 11807-11818.
https://doi.org/10.1007/s10854-019-01554-z
[43] Al-Taay H. F., (2017), Preparation and characterization of chemical bath deposition synthesis of CdS nanocrystalline thin films. Iraqi J. Sci. 58: 454-461.
https://doi.org/10.24996/ijs.2017.58.1C.9
[44] More P., Dhanayat S., Gattu K., Mahajan S., Upadhye D., Sharma R., (2016), Annealing effect on Cu2S thin films prepared by chemical bath deposition. AIP, Conf. Proc. 1728: 020489-020495.
https://doi.org/10.1063/1.4946540
[45] Patil M., Sharma D., Dive A., Mahajan S., Sharma R., (2018), Synthesis and characterization of Cu2S thin film deposited by chemical bath deposition method. Procedia Manuf. 20: 505-508.
https://doi.org/10.1016/j.promfg.2018.02.075
[46] Henglein A., (1989), Small-particle research: Physiochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89: 1861-1873.
https://doi.org/10.1021/cr00098a010
[47] Rahdar A., (2012), Effect of 1-Thioglycerol as capping agent on ZnS nanoparticles: Structural and optical characterization. Int. J. Sci. Eng. Investig. 1: 32-38.
https://doi.org/10.1186/2193-8865-3-10
[48] Brus L. E., (1983), A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79: 5566-5571.
https://doi.org/10.1063/1.445676
[49] Brus L. E., (1984), Electron-electron and electron hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80: 4403-4409.
https://doi.org/10.1063/1.447218
[50] Suresh S. R., (2013), Studies on the dielectric properties of CdS nanoparticles. Appl. Nanosci. 4: 325-329.
https://doi.org/10.1007/s13204-013-0209-x
[51] Sengupta A., Jiang B., Mandal K. C., Zhang J. Z., (1999), Ultrafast electronic relaxation dynamics in PbI2 semiconductor colloidal nanoparticles: A femtosecond transient absorption study. J. Phys. Chem. B. 103: 3128-3137.
https://doi.org/10.1021/jp9842345
[52] Ekimov A. I., Efros A. L., Ivanov M. G., Onushchenko A. A., Shumilov S. K., (1985), Quantum size effect in semiconductor microcrystals. Solid State Commun. 56: 921-924.
https://doi.org/10.1016/S0038-1098(85)80025-9
[53] Bawendi M. G., Kortan A. R., Steigerwald M. L., Brus L. E., (1989), X-ray structural characterization of larger CdSe semiconductor clusters. J. Chem. Phys. 91: 7282-7286.
https://doi.org/10.1063/1.457295
[54] Vogel W., Urban J., Kundu M., Kulkarni S. K., (1997), Sphalerite-wurtzite intermidiates in nanocrystalline CdS. Langmuir. 13: 827-832.
https://doi.org/10.1021/la960426k
[55] Lifshitz E., Yassen M., Bykov L., Dag I., Chaim R., (1994), Nanometer-sized particles of Lead Iodide embedded in silica films. J. Phys. Chem. 98: 1459-1463.
https://doi.org/10.1021/j100056a015
[56] Darekar M. S., Praveen B. M., (2023), Hyperfine splitting and ferromagnetism in CdS : Mn nanoparticles for optoelectronic device applications. J. Semicond. (In Press).
[57] Mourdikoudis S., Pallares R. M., Thanh N. T. K., (2018), Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. R. Soc. Chem. 10: 12871-12934.
https://doi.org/10.1039/C8NR02278J