Numerical investigation of mixed convection in a porous lid-driven cavity filled with kerosene-Al2O3 nanofluid

Document Type : Reasearch Paper

Author

Mechanical Engineering Department, Hamedan University of Technology, 65155-579 Hamedan, Iran.

Abstract

This research deals with the numerical analysis of the heat transfer characteristics of the unsteady combination of alumina-kerosene nanofluid enclosed in a porous cavity with a moving lid. The governing equations of fluid flow and conjugate heat transfer along with the relevant boundary conditions are applied to express the physical problem mathematically. First, the boundary conditions and governing equations are converted into non-dimensional forms by suitable transformation series. In the next step, the finite element method based on Galerkin residue was used to solve the transformed non-dimensional equations. The evaluation is shown by previous studies and found to be excellent in resolution. Numerical solutions are obtained in a wide range of governing variables. In this study, Solid volume fraction ( ), Richardson number (Ri), Reynolds number (Re), etc. are the governing variables. The numerical results of thermal fields and flow are graphically shown according to the average Nusselt number, streamlines, and isotherms on the cavity’s hot surface. It is found that Ri has a wide influence on the streamlines and isotherms in the cavity as well as in specifying the average rate of heat transfer. 

Highlights

 

Keywords

Main Subjects


 

[1] Choi S. U. S., Eastman J. A., (1995), Enhancing thermal conductivity of fluids with nanoparticles, argonne national lab., IL, No. ANL/MSD/CP-84938; CONF- 951135-29.
[2] Buongiorno J., (2006), Convective transport in nanofluids J. Heat Transf. 128: 240-250.
https://doi.org/10.1115/1.2150834
[3] Kakaç S., Pramuanjaroenkij A., (2009), Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52: 3187-3196.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
[4] Sajid M. U., Ali H. M., (2019), Recent advances in application of nanofluids in heat transfer devices: A critical review. Sustain. Energy Rev. 103: 556-592.
https://doi.org/10.1016/j.rser.2018.12.057
[5] Alhajaj Z., Bayomy A. M., Saghir M. Z., (2019), A comparative study on best configuration for heat enhancement using nanofluid. Int. J. Thermofluids 7-8: 100041.
https://doi.org/10.1016/j.ijft.2020.100041
[6] Manzoor A. T., Saghir M. Z., (2021), Heat transfer enhancement in multiple pipes configuration using different fluid mixtures: A numerical approach. Int. J. Thermofluids. 10: 100088.
https://doi.org/10.1016/j.ijft.2021.100088
[7] Olabi A. G., Sayed E. T., Wilberforce T., Elsaid K., Rahman S. M. A., Abdelkareem M. A., (2021), Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. Int. J. Thermofluids. 10: 100072.
https://doi.org/10.1016/j.ijft.2021.100072
[8] Nield D. A., Bejan A., (2019), Convection in porous media, 3, Springer, New York, 2006.
[9] Zing C., Mahjoob S., Vafai K., (2019), Analysis of porous filled heat exchangers for electronic cooling. Int. J. Heat Mass Transf. 133: 268-276.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.067
[10] Xu H. J., Xing Z. B., Wang F. Q., Cheng Z. M., (2019), Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem. Eng. Sci. 195: 462-483.
https://doi.org/10.1016/j.ces.2018.09.045
[11] Alhajaj Z., Bayomy A. M., Ziad Saghir M., Rahman M. M., (2020), Flow of nanofluid and hybrid fluid in porous channels: Experimental and numerical approach. Int. J. Thermofluids. 1-2: 100016.
https://doi.org/10.1016/j.ijft.2020.100016
[12] Sheremet M. A., Pop I., (2015), Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno's model. Comput. Fluids. 118: 182-190.
https://doi.org/10.1016/j.compfluid.2015.06.022
[13] Gros¸an T., Revnic C., Pop I., Ingham D.B., (2015), Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 87: 36-41.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.078
[14] Yahya M., Saghir M. Z., (2021), Thermal analysis of flow in a porous flat tube in the presence of a nanofluid: Numerical approach. Int. J. Thermofluids. 10: 100095.
https://doi.org/10.1016/j.ijft.2021.100095
[15] Karim M. F., Huq S., Azad A. K., Chowdhury M. S. R., Rahman M. M., (2021), Numerical analysis of thermofluids inside a porous enclosure with partially heated wall. Int. J. Thermofluids. 11: 100099.
https://doi.org/10.1016/j.ijft.2021.100099
[16] Plant R. D., Saghir M. Z., (2021), Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. Int. J. Thermofluids. 9: 100055.
https://doi.org/10.1016/j.ijft.2020.100055
[17] Aly A. M., Raizah Z. A. S., Sheikholeslami M., (2020), Analysis of mixed convection in a sloshing porous cavity filled with a nanofluid using ISPH method. J. Therm. Anal. Calorimetry. 139: 1977-1991.
https://doi.org/10.1007/s10973-019-08575-0
[18] Izadi M., Mohebbi R., Delouei A. A., Sajjadi H., (2019), Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int. J. Mech. Sci. 151: 154-169.
https://doi.org/10.1016/j.ijmecsci.2018.11.019
[19] Sheikholeslami M., (2019), Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344: 306-318.
https://doi.org/10.1016/j.cma.2018.09.042
[20] Sheikholeslami M., Ziabakhsh Z., Ganji D. D., (2017), Transport of magnetohydrodynamic nanofluid in a porous media. Colloids and Surf. A: Physicochem. Eng. Aspects. 520: 201-212.
https://doi.org/10.1016/j.colsurfa.2017.01.066
[21] Sheikholeslami M., Shehzad S. A., (2018), CVFEM simulation for nanofluid migration in a porous medium using darcy model. Int. J. Heat Mass Transf. 122: 1264-1271.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.080
[22] Xu H., Gong L., Huang S., Xu M., (2015), Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int. J. Heat Mass Transf. 83: 399-407.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.024
[23] Al-Weheibi S. M., Rahman M. M., Saghir M. Z., (2020), Impacts of variable porosity and variable permeability on the thermal augmentation of Cu-H2O Nanofluid-drenched porous trapezoidal enclosure considering thermal nonequilibrium model. Arab. J. Sci. Eng. 45: 1237-1251.
https://doi.org/10.1007/s13369-019-04234-6
[24] Kalbani Al., Khamis S., Rahman M. M., Ziad Saghir M., (2020), Entropy generation in hydromagnetic nanofluids flow inside a tilted square enclosure under local thermal nonequilibrium condition. Int. J. Thermofluids. 5: 100031.
https://doi.org/10.1016/j.ijft.2020.100031
[25] Hussain S., Mehmood K., Sagheer M., Farooq A., (2017), Entropy generation analysis of mixed convective flow in an inclined channel with cavity with Al2O3-water nanofluid in porous medium. Int. Commun. Heat Mass Transf. 89: 198-210.
https://doi.org/10.1016/j.icheatmasstransfer.2017.10.009
[26] Cimpean D. S., Pop I., (2012), Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int. J. Heat Mass Transf. 55: 907-914.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.018
[27] Al-Rashed A. A., Sheikhzadeh G. A., Aghaei A., Monfared F., Shahsavar A., Afrand M., (2020), Effect of a porous medium on flow and mixed convection heat transfer of nanofluids with variable properties in a trapezoidal enclosure. J. Therm. Anal.Calorimetry. 139: 741-754.
https://doi.org/10.1007/s10973-019-08404-4
[28] Tahmasbi M., Siavashi M., Abbasi H. R., Akhlaghi M., (2020), Mixed convection enhancement by using optimized porous media and nanofluid in a cavity with two rotating cylinders. J. Therm. Anal. Calorimetry. 141: 1829-1846.
https://doi.org/10.1007/s10973-020-09604-z
[29] Selimefendigil F., Chamkha A. J., (2021), MHD mixed convection of Ag-MgO/water nanofluid in a triangular shape partitioned lid-driven square cavity involving a porous compound. J. Therm. Anal. Calorimetry. 143: 1467-1484.
https://doi.org/10.1007/s10973-020-09472-7
[30] Rajarathinam M., Nithyadevi N., Chamkha A. J., (2018), Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Adv. Powder Technol. 29: 590-605.
https://doi.org/10.1016/j.apt.2017.11.032
[31] Ahmed S. E., Aly A. M., (2020), Mixed convection in a nanofluid-filled sloshing porous cavity including inner heated rose. J. Therm. Anal. Calorimetry. 143: 1-17.
https://doi.org/10.1007/s10973-019-09216-2
[32] Astanina M. S., Sheremet M. A., Oztop H. F., Abu-Hamdeh N., (2018), Mixed convection of Al2O3-water nanofluid in a lid-driven cavity having two porous layers. Int. J. Heat Mass Transf. 118: 527-537.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.018
[33] Mahmoodi M., Kandelousi S., (2016), Cooling process of liquid propellant rocket by means of kerosene-alumina nanofluid. Propulsion and Power Res. 5: 279-286.
https://doi.org/10.1016/j.jppr.2016.11.003
[34] Xuan Y., Li Q., (2003), Investigation on convective heat transfer and flow features of nanofluids. ASME J. Heat Trans. 125: 151-155.
https://doi.org/10.1115/1.1532008
[35] Chon C. H., Kihm K. D., Lee S. P., Choi S. U. S., (2005), Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 87: 103-107.
https://doi.org/10.1063/1.2093936
[36] Brinkman H. C., (1952), The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20: 571-578.
https://doi.org/10.1063/1.1700493
[36] Ergun S., (1952), Fluid flow through packed columns. Chem. Eng. Prog. 48: 89-94.
[37] Hoque K. E., Ferdows M., Sawall S., Tzirtzilakis E. E., Xenos M. A., (2021), Hemodynamic characteristics expose the atherosclerotic severity in coronary main arteries: One dimensional and three-dimensional approaches. Phys. Fluids. 33: 121907.
https://doi.org/10.1063/5.0069106
[38] Hoque K. E., Ferdows M., Sawall S., Tzirtzilakis E. E., Xenos M. A., (2021), The impact of hemodynamic factors in a coronary main artery to detect the atherosclerotic severity: Single and multiple sequential stenosis cases. Phys. Fluids. 33: 031903.
https://doi.org/10.1063/5.0041335
[39] Nasrin R., Saddam H., Zahan I., Ahmed K. F. U., Fayaz H., (2020), Performance analysis of hybrid nanofluid on enhancement of fluid thermal conductivity in liddriven undulated cavity. Heat Transf. J. 49: 4204-4225.
https://doi.org/10.1002/htj.21823
[40] Zienkiewicz O. C., Taylor R. L., Zhu J. Z., (2005), The finite element method: Its basis and fundamentals. Elsevier Book.
[41] Codina R., (1998), Comparison of some finite element methods for solving the diffusion convection-reaction equation. Comput. Methods in Appl. Mech. Eng. 156: 185-210.
https://doi.org/10.1016/S0045-7825(97)00206-5