[3] Gholami-Orimi F., Taleshi F., Biparva P., Karimi-Maleh H., Beitollahi H., Ebrahimi H. R., Shamshiri M., Bagheri H., Fouladgar M., Taherkhani A., (2012), Voltammetric determination of homocysteine using multiwall carbon nanotube paste electrode in the presence of chlorpromazine as a mediator. J. Anal. Methods Chem. 798043; doi:10.1155/2012/902184.
https://doi.org/10.1155/2012/902184
[4] Urquijo J. S., Otálora J. A., Suarez. O. J., (2022), Ferromagnetic resonance of a magnetic particle using the Landau-Lifshitz-Bloch equation. J. Magnetism and Magnetic Materials. 552: 169182.
https://doi.org/10.1016/j.jmmm.2022.169182
[5] Patil J. Y., Nadargi D. Y., Gurav J. L., Mulla I. S., Suryavanshi S. S., (2014), Synthesis of glycine combusted NiFe2O4 spinel ferrite: A highly versatile gas sensor. Mat. Let. 124: 144-147.
https://doi.org/10.1016/j.matlet.2014.03.051
[6] Long W., Ouyang H., Hu X., Liu M., Zhang X., Feng Y., Wei Y., (2021), State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int. J. Biol. Macromolec. 186: 591-615.
https://doi.org/10.1016/j.ijbiomac.2021.07.066
[7] Sivakumar D., Mohamed Rafi M., Sathyaseelan B., Prem Nazeer K. M., Ayisha Begam A. M., (2017). Synthesis and characterization of superparamagnetic Iron Oxide nanoparticles (SPIONs) stabilized by Glucose, Fructose and Sucrose. Int. J. Nano Dimens. 8: 257-264.
[8] Gambhir R. P., Rohiwal S. S., Tiwari A. P., (2022), Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review. Appl. Surf. Sci. Adv. 11: 100303.
https://doi.org/10.1016/j.apsadv.2022.100303
[9] Moradi R., Sebt S. A., Arabi H., (2016), Size controlling of L10-FePt nanoparticles during high temperature annealing on the surface of carbon nanotubes. J. Inorg. Organomet. Polym. 26: 344-352.
https://doi.org/10.1007/s10904-015-0322-2
[10] Arabi H., Asnaashari Eivari H., (2014), Applying a suitable route for preparation Fe3O4 nanoparticles by ammonia and investigation of their physical and different magnetic properties Int. J. Nano Dimens. 5: 297-303.
[11] Ghandoor H. E., Zidan H. M., Khalil M. M. H., Ismail M. I. M., (2012), Synthesis and some physical properties of magnetite Fe3O4 nanoparticles. Int. J. Electrochem. Sci. 7: 57734-57745.
https://doi.org/10.1016/S1452-3981(23)19655-6
[12] Zhao K., Fang X., Huang Z., Wei G., Zheng A., Zhao Z., (2021), Hydrogen-rich syngas production from chemical looping gasification of lignite by using NiFe2O4 and CuFe2O4 as oxygen carriers. Fuel. 303: 121269.
https://doi.org/10.1016/j.fuel.2021.121269
[13] Guo Y., Li S., Yang M., Li H., (2022), A sintering strategy for lithium zinc ferrite with a high saturation magnetization and low ferromagnetic resonance line-width. Ceramics Int. 48: 18067-18073.
https://doi.org/10.1016/j.ceramint.2022.02.253
[14] Shen C., Bao Q., Xue W., Sun K., Zhang Z., Jia X., Mei D., Liu C., (2022), Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: A theoretical study. J. Energy Chem. 65: 623-629.
https://doi.org/10.1016/j.jechem.2021.06.039
[15 ] Kombaiah K., Vijaya J. J., Kennedy J. L., Bououdina M., Ramalingam R. J., Al-Lohedan H. A., (2017), Comparative investigation on the structural, morphological, optical, and magnetic properties of CoFe2O4 nanoparticles. Ceramics Int. 43: 7682-7689.
https://doi.org/10.1016/j.ceramint.2017.03.069
[16] Xu J., Shu R., Shi J., (2022), Synthesis of tetragonal copper-nickel ferrite decorated nitrogen-doped reduced graphene oxide composite as a thin and high-efficiency electromagnetic wave absorber. Colloids and Surf. A: Physicochem. Eng. Aspects. 648: 129411.
https://doi.org/10.1016/j.colsurfa.2022.129411
[17] Kombaiah K., Vijaya J. J., Kennedy J. L., Bououdina M., Al-Najar B., (2018), Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. J. Phys. Chem. Solids. 115: 162-171.
https://doi.org/10.1016/j.jpcs.2017.12.024
[18] Singh S., Yadav B. C., Prakash R., Bajaj B., Lee J. R., (2011), Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257: 10763-10770.
https://doi.org/10.1016/j.apsusc.2011.07.094
[19] Dehno Khalaji A., (2021), Preparation and characterization of PVC/NiFe2O4/Fe2O3 composite: Catalytic activity for synthesis of Arylidene Barbituric acid derivatives. Int. J. Nano Dimens. 12: 37-43.
[20] Sahu B. N., Sahoo S. C., Venkataramani N., Prasad S., Krishnan R., Kostylev M., Stamps R. L., (2013), Magnetic and FMR study on CoFe2O4/ZnFe2O4 bilayers. IEEE Transact. Magnet. 49: 4200-4203.
https://doi.org/10.1109/TMAG.2013.2251327
[21] Kukli K., Mikkor M., Šutka A., Kull M., Seemen H., Link J., Stern R., Tamm A., (2020), Behavior of nanocomposite consisting of manganese ferrite particles and atomic layer deposited bismuth oxide chloride film. J. Magnetism and Magnetic Mater. 498: 166167.
https://doi.org/10.1016/j.jmmm.2019.166167
[22] Zamani A., Seyed Sadjadi M., Mahjoub A. R., Yousefi M., Farhadyar N., (2020), Synthesis and characterization ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites: Investigation of photocatalytic activity for the degradation of Congo Red under visible light irradiation. Int. J. Nano Dimens. 11: 58-73.
[23] Kaur S., Chalotra V. K., Jasrotia R., Bhasin V., Suman., Kumari S., Thakur S., Ahmed J., Mehtab A., Ahmad T., Singh R., Godara S. K., (2022), Spinel nanoferrite (CoFe2O4): The impact of Cr doping on its structural, surface morphology, magnetic, and antibacterial activity traits. Optical Materials. 133: 113026.
https://doi.org/10.1016/j.optmat.2022.113026
[24] Godbolea B., Baderab N., Shrivastavac S. B., Jaind D., Sharath Chandrae L. S., Ganesan V., ( 2013 ), Synthesis, structural, electrical and magnetic studies of Ni Ferrite nanoparticles. Phys. Procedia. 49: 58-66.
https://doi.org/10.1016/j.phpro.2013.10.011
[25] Abdelghani G. M., Al-Zubaidi A. B., Ahmed A. B., (2023), Synthesis, characterization, and study of the influence of energy of irradiation on physical properties and biologic activity of nickel ferrite nanostructures. J. Saudi Chem. Soc. 27: 101623.
https://doi.org/10.1016/j.jscs.2023.101623
[26] Baghel P., Sakhiya A. K., Kaushal P., (2022), Ultrafast growth of carbon nanotubes using microwave irradiation: Characterization and its potential applications. Heliyon. 8: e10943.
https://doi.org/10.1016/j.heliyon.2022.e10943
[27] Sohrabi L., Taleshi F., Sohrabi R., (2014), Effect of carbon nanotubes support on band gap energy of MgO nanoparticles. J. Mater. Sci: Mater. Electron. 25: 4110-4114.
https://doi.org/10.1007/s10854-014-2136-3
[28] Maity D., Kumar R. T. R., (2019), Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes (MWCNTs)/polypyrrole composite. Biosensors and Bioelectronics. 130: 307-314.
https://doi.org/10.1016/j.bios.2019.02.001
[29] Avile's F., Cauich-Rodrı'guez J. V., Moo-Tah L., May-Pat A., (2009), Vargas-Coronado R., evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon. 47: 2970-2975.
https://doi.org/10.1016/j.carbon.2009.06.044
[30] Venkateswarlu K., Chandra Bose A., Rameshbabu N., (2010), X-ray peakbroadening studies of nanocrystalline hydroxyapatite by Williumson-Hall analysis. Phys. B. 405: 4256-4261.
https://doi.org/10.1016/j.physb.2010.07.020