[1] Anil D. G., Bai Y., Choi Y., (2018), Performance evaluation of ternary computation in SRAM design using graphene nanoribbon field effect transistors," in
2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 382-388.
https://doi.org/10.1109/CCWC.2018.8301723
[2] Nikbakht E., Dideban D., Moezi N., (2020), A half adder design based on ternary multiplexers in carbon nano-tube field effect transistor (CNFET) technology.
ECS J. Solid State Sci. Technol. 9: 081001.
https://doi.org/10.1149/2162-8777/abb588
[3] Nayeri M., Keshavarzian P., Nayeri M., (2019), Approach for MVL design based on armchair graphene nanoribbon field effect transistor and arithmetic circuits design.
Microelectron. J. 92: 104599.
https://doi.org/10.1016/j.mejo.2019.07.017
[5] Tabrizchi S., Azimi N., Navi K., (2017), A novel ternary half adder and multiplier based on carbon nanotube field effect transistors.
Frontiers of Inform. Technol. Electronic Eng. 18: 423-433.
https://doi.org/10.1631/FITEE.1500366
[7] Pelletier B., Juhel M., Trouiller C., Beucher D., Autran J., Morin P., (2008), Boron out-diffusion mechanism in oxide and nitride CMOS sidewall spacer: Impact of the materials properties.
Mater. Sci. Eng: B. 154: 252-255.
https://doi.org/10.1016/j.mseb.2008.09.025
[8] Chen Y.-Y., Sangai A., Rogachev A., Gholipour M., Iannaccone G., Fiori G.
(2015),
A SPICE-compatible model of MOS-type graphene nano-ribbon field-effect transistors enabling gate-and circuit-level delay and power analysis under process variation.
IEEE Transact. Nanotechnol. 14: 1068-1082.
https://doi.org/10.1109/TNANO.2015.2469647
[9] Gholipour M., Chen Y.-Y., Sangai A., Masoumi N., Chen D., (2015), Analytical SPICE-compatible model of Schottky-barrier-type GNRFETs with performance analysis.
IEEE Transact. Very Large Scale Integration (VLSI) Systems. 24: 650-663.
https://doi.org/10.1109/TVLSI.2015.2406734
[10] Radsar T., Khalesi H., Ghods V., (2020), Improving the performance of graphene nanoribbon field-effect transistors by using lanthanum aluminate as the gate dielectric.
J. Comp. Electron. 19: 1507-1515 .
https://doi.org/10.1007/s10825-020-01557-8
[12] Zarandi A. D., Reshadinezhad M. R., Rubio A., (2020), A systematic method to design efficient ternary high performance CNTFET-based logic cells.
IEEE Access. 8: 58585-58593. .
https://doi.org/10.1007/s10825-020-01557-8
[13] Jaber R. A., Kassem A., El-Hajj A. M., El-Nimri L. A., Haidar A. M., (2019), High-performance and energy-efficient CNFET-based designs for ternary logic circuits.
IEEE Access. 7: 93871-93886. .
https://doi.org/10.1007/s10825-020-01557-8
[15] Abbasian E., Orouji M., Taghipour Anvari S., Asadi A., Mahmoodi E., (2023), An ultra low power and energy‐efficient ternary Half‐Adder based on unary operators and two ternary 3 : 1 multiplexers in 32-nm GNRFET technology. Int. J. Circuit Theory Applicat. 51: 4969-4983.
[16] Abbasian E., Aminzadeh A., Taghipour Anvari S., (2023), GNRFET-and CNTFET-based designs of highly efficient 22 T unbalanced single-trit ternary multiplier cell.
Arab. J. Sci. Eng. 1-16. .
https://doi.org/10.1007/s10825-020-01557-8
[17] Abbasian E., Nayeri M., (2023), A high-speed low-energy one-trit ternary multiplier circuit design in CNTFET technology.
ECS J. Solid State Sci. Technol. 12: 89-95.
https://doi.org/10.1007/s10825-020-01557-8
[18] Rohani Z., Emrani Zarandi A. A., (2023), A power efficient 32 nm ternary multiplier using Graphene nanoribbon field-effect transistor technology.
ECS J. Solid State Sci. Technol. 12:47-52. .
https://doi.org/10.1007/s10825-020-01557-8
[19] Jaber R. A., Aljaam J. M., Owaydat B. N., Al-Maadeed S. A., Kassem A., A. Haidar M., (2021), Ultra-low energy CNFET-based ternary combinational circuits designs.
IEEE Access. 9: 115951-115961. .
https://doi.org/10.1007/s10825-020-01557-8
[21] Srinivasu B., Sridharan K., (2016), Low-complexity multiternary digit multiplier design in CNTFET technology.
IEEE Transact. Circuits and Systems II: Express Briefs. 63: 753-757. .
https://doi.org/10.1007/s10825-020-01557-8
[25] Abbasian E., Mirzaei T., (2022), A stable low leakage power SRAM with built-In read/write-assist scheme using GNRFETs for IoT applications.
ECS J. Solid State Sci. Technol. 11: 791-796.
https://doi.org/10.1007/s10825-020-01557-8
[27] Sadjadi M. A, Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X=F(1), X = Cl(2).
J. Mol. Struc: Theochem. 817: 27-33.
https://doi.org/10.1016/j.theochem.2007.04.015
[28] Mani E., Abbasian E., Gunasegeran M., Sofimowloodi S., (2022), Design of high stability, low power and high speed 12 T SRAM cell in 32-nm CNTFET technology.
AEU-Int. J. Electron. Communic. 154: 154308-154313.
https://doi.org/10.1007/s10825-020-01557-8