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Abstract
This research explores how two-dimensional honeycomb materials can be used in advanced electronics, 
focusing on zigzag honeycomb nanoribbons. These nanoribbons can create zero-energy band gaps, enabling 
helical spin current edge states. The study investigates the quantum spin Hall state, showcasing the adaptability 
of the Kane-Mele model in various honeycomb lattices. In addition to the theoretical discussions, this study 
presents a detailed Hamiltonian, performs band structure computations, and introduces a novel spin-filtering 
technique for zigzag nanoribbons. This method enhances our understanding of edge-localized quantum 
states and can revolutionize spintronics. By revealing the quantum states in honeycomb nanoribbons, this 
study contributes to the advancement of electronics and offers a promising path for highly efficient spin-
based technologies.
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INTRODUCTION
Interest in two-dimensional honeycomb 

crystalline materials has surged due to 
their potential in advanced electronics with 
enhanced processing capabilities [1-3]. These 
materials are particularly appealing because 
of their edge structures, with zigzag edges 
playing a crucial role in defining the nanoscale 
electrical characteristics [4, 5]. The edge states 
in honeycomb zigzag nanoribbons (ZNRs) are 
significant because they form restricted edge 
channels concentrated at the edges of the bulk. 
In contrast to armchair edges, zigzag edges create 
zero-energy band gaps, allowing edge carriers 
to propagate freely through their channels [6-
8]. The exponential decay of zigzag edge states 
away from the edges is noteworthy and aids in 
understanding the transport phenomena, which 
is crucial for developing highly efficient electrical 
nanodevices [9, 10].

Silicene and germanene, materials with 
intrinsic spin-orbit interaction (SOI), hold promise 

for discovering quantum spin Hall (QSH) states. 
Graphene-like materials undergo a captivating 
transition to the QSH phase when the SOI is 
enhanced, affecting the spin degree of freedom. 
Kane and Mele first predicted this phenomenon 
[11, 12] by developing band structures of graphene 
zigzag nanoribbons (ZNRs) with SOI components 
using the Haldane model [13]. This revealed gap 
formation around the Fermi energy, where time-
reversal symmetry protects two spin-filtered 
channels, resulting in edge states with rotational 
motion and topological insulator properties [14]. 
Kane-Mele’s model extends beyond graphene 
to various honeycomb lattices like silicene, 
germanene [15, 16], stanene [17], and more [18, 
19], showcasing their potential for spintronics 
applications [20-21]. Some researchers have 
worked on surrounding issues [22-24]. Certainly, 
by applying DFT and incorporating electron-
electron interactions, as done in other studies, 
the calculations can be extended and enhanced. 
This approach allows for a more comprehensive 
exploration of the system, taking into account the 
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electron-electron interactions for a more accurate 
representation [25-28].

This paper is organized into several sections 
for a comprehensive examination of our study. 
Section 2 introduces the Hamiltonian under 
Spin-Orbit Interaction (SOI), forming the basis for 
understanding the electronic states in honeycomb 
structures. Using this Hamiltonian, we explore the 
band structure of a honeycomb sheet, revealing 
the intricate influence of the SOI and the resulting 
band gap.

Section 3, at the core of our findings, is divided 
into two key subsections. The first study examines 
the impact of the SOI on the bulk band spectrum, 
uncovering quantum dynamics. Simultaneously, 
we investigate the size-dependent band gap in 
Zigzag Nanoribbons (ZNRs), which is crucial for 
nanoscale device design. In the second subsection, 
we pioneer the exploration of ZNRs under varying 
SOI strengths by introducing a groundbreaking 
spin-filtering technique with significant potential 
for spintronics.

Finally, section 4 concludes the study with 
a concise summary of the results and their 
implications. This conclusion highlights the 
broader significance of our findings and provides 
direction for future research in the dynamic fields 
of spintronics and quantum materials.

MATERIALS AND METHODS

   The Hamiltonian for the honeycomb lattice with 
two unique bases, as illustrated in Fig. 1(a), is as 
follows, disregarding the SOI, 
  

H = ∑εaci
†ci +

i
∑εbbi

†bi
i

+ t∑(ci
†bjbj

†ci).
⟨i,j⟩

 

 1 
   To expand this framework based on Haldane’s 
model and account for the SOI, we need to 
incorporate the Hamiltonian of the SOI into 
Equation (1). The general form of the SOI 
Hamiltonian is 
 

H = ℏe
4m0

2c2 (∇⃗⃗ V × P⃗⃗ ). σ⃗⃗ = − ℏe
4m0

2c2 (E⃗⃗ × P⃗⃗ ). σ⃗⃗ , 
 2 

here ℏ, 𝑚𝑚0, 𝑒𝑒 and 𝑐𝑐 are Planck’s constant, electron 
mass, electron charge, and the speed of light, 
respectively. The crystal lattice ions create an 
electric potential 𝑉𝑉(𝐸⃗𝐸 ) due to the coplanar 
direction of the electric field within the plane. P⃗⃗  
signifies the magnitude and direction of electron 
movement, influenced by electron hopping from 
  

 one position to another. Fig. 1(b) illustrates the 
electric-field direction of the graphene 
honeycomb network. The presence of mirror 
symmetry results in a zero total electric field at the 
hopping location, preventing the spin-orbit effect 
in electron hopping between adjacent sites. 
However, due to the absence of symmetry, a non-
zero electric field emerges, leading to a non-zero 
SOI. 
   By setting 𝑃⃗𝑃 = 𝑖𝑖𝑖𝑖𝑑𝑑 𝑖𝑖𝑖𝑖  (where 𝑑𝑑 𝑖𝑖𝑖𝑖  is the hopping 
vector to the second neighbors and between 
atomic positions i and j), the spin-orbit 
Hamiltonian can be rewritten as follows, 
 

𝐻𝐻𝑠𝑠𝑠𝑠 = 𝑖𝑖 ℏ𝑒𝑒𝑒𝑒
4𝑚𝑚0

2𝑐𝑐2 (𝐸⃗𝐸 × 𝑑𝑑 𝑖𝑖𝑖𝑖). 𝜎𝜎 . 
 3 

   Because 𝐸⃗𝐸 , 𝑑𝑑 𝑖𝑖𝑖𝑖  are both on the (𝑥𝑥 − 𝑦𝑦) plane, 
their cross product is in the z-direction, hence 𝐻𝐻𝑠𝑠𝑠𝑠  
is as follows, 
 

𝐻𝐻𝑠𝑠𝑠𝑠 = 𝑖𝑖
ℏ𝑒𝑒𝑒𝑒|𝐸⃗𝐸 × 𝑑𝑑 𝑖𝑖𝑖𝑖|

4𝑚𝑚0
2𝑐𝑐2 𝜈𝜈𝑖𝑖𝑖𝑖𝜎𝜎𝑧𝑧 = 𝑖𝑖𝑡𝑡𝑠𝑠𝑠𝑠𝜈𝜈𝑖𝑖𝑖𝑖𝜎𝜎𝑧𝑧, 

 4 

   where 𝜈𝜈𝑖𝑖𝑖𝑖 = 𝑑𝑑 𝑖𝑖×𝑑𝑑 𝑗𝑗
|𝑑𝑑 𝑖𝑖×𝑑𝑑 𝑗𝑗|

 and 𝑡𝑡𝑠𝑠𝑠𝑠 is the intensity of the 

SOI. The electron experiences varying electric 
fields when hopping to the second neighbor due 
to the different basic atoms in the honeycomb 
lattice. According to Fig. 1(b), when hopping to the 
second neighbor in the type A atom, there is a field 
E, and when hopping to the second neighbor in the 
type B atom, there is a field E'; hence, the value of 
𝑡𝑡𝑠𝑠𝑠𝑠 for these states and the Hamiltonian of SOI will 
be different. It will look like this, 
 

𝐻𝐻𝑠𝑠𝑠𝑠 = 𝑖𝑖𝑡𝑡𝑠𝑠𝑠𝑠 ∑ 𝜈𝜈𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖
†𝜎𝜎𝑧𝑧𝑐𝑐𝑗𝑗

⟨⟨𝑖𝑖,𝑗𝑗⟩⟩

+ 𝑖𝑖𝑡𝑡𝑠𝑠𝑠𝑠′ ∑ 𝜈𝜈𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖
†𝜎𝜎𝑧𝑧𝑏𝑏𝑗𝑗

⟨⟨𝑖𝑖,𝑗𝑗⟩⟩

. 

 5 
   Finally, by incorporating the SOI, the overall 
Hamiltonian for the honeycomb lattice is stated as  
follows, 
 

𝐻𝐻 = ∑𝜀𝜀𝑎𝑎𝑐𝑐𝑖𝑖
†𝑐𝑐𝑖𝑖 +

𝑖𝑖
∑𝜀𝜀𝑏𝑏𝑏𝑏𝑖𝑖

†𝑏𝑏𝑖𝑖
𝑖𝑖

+ 𝑡𝑡 ∑(𝑐𝑐𝑖𝑖
†𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗

†𝑐𝑐𝑖𝑖)
⟨𝑖𝑖,𝑗𝑗⟩

+ 𝑖𝑖𝑡𝑡𝑠𝑠𝑠𝑠 ∑ 𝜈𝜈𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖
†𝜎𝜎𝑧𝑧𝑐𝑐𝑗𝑗

⟨⟨𝑖𝑖,𝑗𝑗⟩⟩

+ 𝑖𝑖𝑡𝑡𝑠𝑠𝑠𝑠′ ∑ 𝜈𝜈𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖
†𝜎𝜎𝑧𝑧𝑏𝑏𝑗𝑗.

⟨⟨𝑖𝑖,𝑗𝑗⟩⟩

 

 6 
   In this relation, 𝑡𝑡𝑠𝑠𝑠𝑠′ , 𝑡𝑡𝑠𝑠𝑠𝑠 represent the SOI for 
atoms of type B and A, 𝜎𝜎𝑧𝑧 represents the Pauli 
matrix, 𝑏𝑏𝑖𝑖

†, 𝑐𝑐𝑖𝑖
† are creation operators and 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖 are 

annihilation operators for 𝜋𝜋 electrons in the i-th 
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site with 𝜎𝜎 spin, ⟨𝑖𝑖, 𝑗𝑗⟩ indicates the sum over the 
first neighbor, and ⟨⟨𝑖𝑖, 𝑗𝑗⟩⟩ indicates the sum over 
the second neighbor. 
The Hamiltonian for a two-dimensional pseudo-
graphene lattice takes the shape of a 4x4 matrix 
and has the following formula, 
 

𝐻𝐻(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) = (𝐻𝐻(𝑘𝑘) 0
0 𝐻𝐻∗(−𝑘𝑘)), 

 7 
   where 𝐻𝐻(𝑘𝑘) is a 2x2 Hamiltonian for spin-up 
levels and 𝐻𝐻∗(−𝑘𝑘), representing the time-reversal 
of 𝐻𝐻(−𝑘𝑘), is for spin-down levels. 
   In the next steps, we compute the energy bands 
for spin-up levels, and subsequently, utilizing the 
time-reversal symmetry, we derive the energy 
bands for spin-down levels. 
Hamiltonian 𝐻𝐻(𝑘𝑘) has the following general form, 
 

𝐻𝐻↑(𝑘𝑘) = (
𝜀𝜀𝑎𝑎 + 2𝑡𝑡𝑠𝑠𝑠𝑠ℎ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) |𝑐𝑐|

|𝑐𝑐|∗ 𝜀𝜀𝑏𝑏 − 2𝑡𝑡𝑠𝑠𝑠𝑠
′ ℎ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦)), 

 
8 

   the value of ℎ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) in this expression is 
  

ℎ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) = (− 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑥𝑥𝑎𝑎) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑘𝑘𝑥𝑥
2 𝑎𝑎 + √3

2 𝑘𝑘𝑦𝑦𝑎𝑎) −

𝑠𝑠𝑠𝑠𝑠𝑠 (−𝑘𝑘𝑥𝑥
2 𝑎𝑎 + √3

2 𝑘𝑘𝑦𝑦𝑎𝑎)). 

 9 
   The value of c in this context is 

|𝑐𝑐|

= √3 + 2 (𝑐𝑐𝑐𝑐𝑐𝑐 (𝑘𝑘𝑥𝑥
2 𝑎𝑎 + √3

2
𝑘𝑘𝑦𝑦
2 𝑎𝑎) + 𝑐𝑐𝑐𝑐𝑐𝑐 (−𝑘𝑘𝑥𝑥

2 𝑎𝑎 + √3
2

𝑘𝑘𝑦𝑦
2 𝑎𝑎) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑥𝑥𝑎𝑎)). 

                                                                           10 
   By diagonalizing the Hamiltonian in equation (8), 

𝜀𝜀↑± = (𝑡𝑡𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑠𝑠𝑠𝑠
′ )𝐻𝐻(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) ±

√(𝛥𝛥
2 + (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑠𝑠𝑠𝑠′ )ℎ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦))

2
+ |𝑐𝑐|2.                                  11 

 
   Considering zero energy between the on-site 
energies, we obtain: 𝜀𝜀𝑏𝑏 = − 𝛥𝛥

2 , 𝜀𝜀𝑎𝑎 = 𝛥𝛥
2 where: 𝜀𝜀𝑏𝑏 =

− 𝛥𝛥
2 , 𝜀𝜀𝑎𝑎 = 𝛥𝛥

2. Also, by using the time-reversal 
symmetry, we can obtain the spin-down energy 
bands as follows, 
 

𝜀𝜀↓± = −(𝑡𝑡𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑠𝑠𝑠𝑠
′ )𝐻𝐻(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) ±

√(𝛥𝛥
2 − (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑠𝑠𝑠𝑠′ )ℎ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦))

2
+ |𝑐𝑐|2.                                  12 

 

   The extrema of the valence and conduction 
bands in pseudo-graphene structures are 
positioned on the boundary of the first Brillouin 

zone at the positions 𝐾𝐾 = (4𝜋𝜋3𝑎𝑎 , 0), 𝐾𝐾
′ = (2𝜋𝜋3𝑎𝑎 ,

2𝜋𝜋
√3𝑎𝑎). 

The energy gap of spin-up and spin-down can be 
calculated by putting the coordinates of the K 
point in the relation (11) and (12). 

 

𝜀𝜀𝑔𝑔↑ = 𝜀𝜀+↑ − 𝜀𝜀−↑ = |𝛥𝛥 + 3√3
2 (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑠𝑠𝑠𝑠′ )| ,

𝜀𝜀𝑔𝑔↓ = 𝜀𝜀+↓ − 𝜀𝜀−↓ = |𝛥𝛥 − 3√3
2 (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑠𝑠𝑠𝑠′ )|. 

 

13 

   Additionally, at the 𝐾𝐾′ point, the spin-up and 
spin-down energy gaps are as follows, 
 

𝜀𝜀𝑔𝑔↓ = 𝜀𝜀+↓ − 𝜀𝜀−↓ = |𝛥𝛥 + 3√3
2 (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑠𝑠𝑠𝑠′ )| ,

𝜀𝜀𝑔𝑔↑ = 𝜀𝜀+↑ − 𝜀𝜀−↑ = |𝛥𝛥 − 3√3
2 (𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑠𝑠𝑠𝑠′ )|. 

 

14 

   If we consider the Fermi energy within the band 
gap, then: 𝜀𝜀𝑓𝑓 = 𝜀𝜀− + 𝛥𝛥

2 =
3√3
2 (𝑡𝑡𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑠𝑠𝑠𝑠′ ). 

RESULTS AND DISCUSSIONS
Effect of equal SOI for two bases in a unit cell on 
honeycomb pseudo-graphene and ZNR 

Fig. 2 displays the energy band structures 
of a pseudo-graphene sheet with varying on-
site energies for type A and type B atoms 
εA=0.5,εB=-0.5. The SOI of A type atoms, tso, is 
considered equal to the SOI of B type atoms, 
t'so. The paths used are illustrated in Fig. 1(c), 
following used Γ-K-M-K'-Γ.

Fig. 2(a) illustrates that when tso=0, the 
energy bands of spin-up and spin-down overlap, 
leaving a gap equal to the energy difference on 
the sites of type A and type B atoms. With the 
introduction of SOI, the Hamiltonian establishes 
time-reversal symmetry, resulting in the split of 
spin-up and spin-down energy bands. This leads 
to an asymmetry between the spin-up and spin-
down bands along the specified route. The spin-
up energy band gap decreases at K' and increases 
at K, while the spin-down energy band gap 
increases at K' and decreases at K as depicted in 

Fig. 2(b). At a critical value 

the band gap completely closes at the K' point for 
spin-up bands and at the K point for spin-down 
bands, as demonstrated in Fig. 2(c). When tso> tso-c 
, the energy band reopens, the valence states are 
replaced by conduction states, the energy band 
inverts, and the network enters the QSH state, as 
depicted in Fig. 2(d).
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Fig. 2. a) The SOI is zero (𝑡𝑡𝑠𝑠𝑠𝑠 = 0), b) by increasing the SOI of each lattice atom (𝑡𝑡𝑠𝑠𝑠𝑠 =
0.05), it shows different behaviors for spin-up (blue) and spin-down (red) bands, c) until 

at a critical value (𝑡𝑡𝑠𝑠𝑠𝑠−𝑐𝑐 = 0.096), both closed, and d) it enters the QSH phase (𝑡𝑡𝑠𝑠𝑠𝑠 >
𝑡𝑡𝑠𝑠𝑠𝑠−𝑐𝑐). 

 

  

Fig. 2. a) The SOI is zero (tso=0), b) by increasing the SOI of each lattice atom (tso=0.05), it shows different behaviors for spin-up (blue) 
and spin-down (red) bands, c) until at a critical value (tso-c=0.096), both closed, and d) it enters the QSH phase (tso>tso-c).

 

 
Fig. 1. a) Honeycomb pseudo-graphene lattice (with different bases), b) Electric field 
direction for honeycomb network, and c) high symmetry points in reciprocal lattice. 

  

Fig. 1. a) Honeycomb pseudo-graphene lattice (with different bases), b) Electric field direction for honeycomb network, and c) high 
symmetry points in reciprocal lattice.
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To investigate the impact of size on the transition 
to the QSH phase, we calculate the energy bands 
of zigzag pseudo-graphene nanoribbons with 
varying widths and bases. Fig. 3(a-d) illustrates the 
energy bands at the Fermi level for nanoribbons 
with widths of 15, 30, 60, and 100 nanometers, 
respectively. Each graph represents different spin-
orbit intensities (tso = 0, 0.05, 0.096, 0.14) for a 
specific nanoribbon width. The structure of the 
ZNRs, which is infinite in the 𝑥-direction  and finite 
in the 𝑦-direction, is shown in Fig. 3(e). Finally, 
Fig. 3(f) presents the critical SOI as a function of 

the ZNR width (𝑌=2|𝑦|), indicating a decrease in 
critical SOI with increasing ZNR width.

 Similar to the pseudo-graphene sheet, the 
critical SOI for the transition from the trivial 
phase to the QSH phase in the ZNRs is tso-c= 
0.096. Despite the existence of a band gap at this 
intensity for various ribbon widths, the gap was 
more pronounced for smaller sizes. If we interpret 
the narrowing of the band gap as the basis for the 
transition to the QSH state, it becomes evident 
that nanoribbons with smaller sizes undergo a 
transition at higher spin-orbit intensity.

 

 
Fig. 3. a-d) With the increase in the size of the unit cell in the ZNR and the strength of 

the SOI, the gap closes and enters the QSH phase, spin-up band and spin-down depicted 
in continues and dashed lines, respectively, e) Honeycomb zigzag nanoribbon (ZNR) 

which is infinite in the 𝑥𝑥-direction and finite in the 𝑦𝑦-direction, f) Critical SOI as a 
function of the width of ZNR 𝑌𝑌=2|𝑦𝑦| where the ribbon is considered from -𝑦𝑦 to 𝑦𝑦. 

 

 

  

Fig. 3. a-d) With the increase in the size of the unit cell in the ZNR and the strength of the SOI, the gap closes and enters the QSH 
phase, spin-up band and spin-down depicted in continues and dashed lines, respectively, e) Honeycomb zigzag nanoribbon (ZNR) 
which is infinite in the 𝑥-direction and finite in the 𝑦-direction, f) Critical SOI as a function of the width of ZNR 𝑌=2|𝑦| where the 
ribbon is considered from -𝑦 to 𝑦.
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In Fig. 3(f), tso-c is illustrated for different 
nanoribbon sizes. Notably, tso-c decreases as 
the nanoribbon width increases. Nanoribbons 
with wider dimensions converge to tso= 0.096, 
representing the critical spin-orbit intensity 
observed in the pseudo-graphene sheet.

 At tso= 0, a gap exists between the valence and 
conduction energy bands, which is equivalent to 
the energy disparity at the two-base atomic sites. 
This gap renders the nanoribbon completely 
nonmagnetic, and its size remains constant 
regardless of the nanoribbon width. In this 
context, the energy band exhibits smoothness 
between the K', K points, with the electron 
group velocity approaching zero in this energy 
band region. With increasing SOI, both the spin-
up band gap at the K  point and the spin-down 
band gap around the K' point decrease. The 
energy band structures exhibit clear time reversal 
symmetry.

Table 1 provides a detailed exploration of 
how the band gap size can be precisely adjusted 
by considering the number of atoms in the unit 
cell, providing valuable insights into both trivial 
and QSH phases. This analysis delves into the 
fascinating interplay between the structural 
dimensions and resulting electronic properties.

Effect of non-equal SOI for each base in a unit 
cell on honeycomb pseudo-graphene and ZNR

In this section, we explore the energy band 
structures of honeycomb pseudo-graphene 
and ZNRs with atoms of different types, each 
characterized by distinct spin-orbit intensity values 
for type A (tso) and B (t'so) atoms. Specifically, we 
assume that the spin-orbit intensity is zero for an 
atom (t'so=0). It is imperative to provide a concise 
comparative analysis between this specific state 
and the one discussed in the previous section.

Fig. 4(a) illustrates the energy band associated 
with pseudo-graphene. The computations 
reveal that the introduction of varying spin-orbit 
strengths for lattice atoms disrupts the energy 
band symmetry relative to the Fermi surface. This 
perturbation leads to the closure of a band gap 
and the subsequent transition to the QSH phase, 
initiating the generation of spin current along the 
edges of the material.

The energy band associated with the ZNRs in a 
state where the Fermi energy is considered to be 
zero is illustrated in Fig. 4(b). As mentioned in the 
previous subsection, the spin-orbit intensity was 
the same for both atoms. If we consider the spin-
orbit intensity to be zero for atom B and only atom 
A has a significant SOI, the symmetry of the energy 

Table 1. The detailed exploration of how the band gap size. 

  

 

sot 
ZNR width 15 (atoms) 30 (atoms) 60 (atoms) 100 (atoms) 

(eV)gap E 

0.05 0.4834 0.5254 0.4982 0.4868 
0.096 0.0594 0.0312 0.0198 0.1146 

 
Fig. 4. Band structures of a) pseudo-graphene with the same and non-identical SOI, and 
band structure of b) ZNRs with the same and non-identical SOI, respectively, in purple 

dashed line and black solid line. 
 

  

Fig. 4. Band structures of a) pseudo-graphene with the same and non-identical SOI, and band structure of b) ZNRs with the same 
and non-identical SOI, respectively, in purple dashed line and black solid line.
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band seen earlier is disrupted. This asymmetry 
concerning the Fermi surface results in a different 
spin current, which we attempt to explain further 
by measuring it, thus explaining the initial idea of 
the spin diode. 

Hence, we explain how our device responds to 
spin currents. We focus on adjusting parameters 
such as spin-orbit intensity and provide a 
brief overview of the structure of the device, 
highlighting its flexibility in adapting to parameter 
changes. We explore the details of the design and 
explain how variations in spin-orbit intensity affect 
device performance. We also discuss the reasons 
for selecting specific parameters, providing insight 
into the principles governing spin current. This 
concise exploration offers a clear understanding of 
the engineering of the device, its ability to respond 
to different spin configurations, and its potential 
applications in spin-current operations.

Fig. 5(a) illustrates the distribution of spin 
current on both edges of the two-dimensional 
material. The spin current is localized on one edge, 
referred to as the middle state, by manipulating 
the spin-orbit intensities at each atom in the unit 
cell, as shown in Fig. 5(b). This intriguing behavior 
has led to the conceptualization of spin diodes. The 
spin diode is envisioned as a device that restricts 
the flow of spin-up and spin-down currents to 
one direction exclusively because of its inherently 
unidirectional nature. Similar to a traditional diode 

 
Fig. 5. Key concepts: a) existence of a rotating spin current, b) the spin current at one 

edge (middle state), and c) conceptualization of the spin diode. 
 

  

Fig. 5. Key concepts: a) existence of a rotating spin current, b) the spin current at one edge (middle state), and c) conceptualization 
of the spin diode.

 
Fig. 6. spin-up and spin-down current (30 atoms in unit cell) a) on both edge, b) on one 
edge (middle state), and c) schematic of the band structure and the contribution of spin-

up (dark green) and spin-down (pale green) carriers. 
 

Fig. 6. spin-up and spin-down current (30 atoms in unit cell) a) on both edge, b) on one edge (middle state), and c) schematic of the 
band structure and the contribution of spin-up (dark green) and spin-down (pale green) carriers.

that controls the flow of electrical current, the 
spin diode guides the flow of the spin current in 
one direction, as illustrated in Fig. 5(c).

Fig. 6(a) displays the spin current on both 
edges, establishing a connection between the 
rotating current and the QSH phase. Importantly, 
this connection remains consistent irrespective of 
the current’s strength. Transitioning to the middle 
state in Fig. 6(b) results in the current being 
exclusively located on one side. This configuration 
allows us to selectively observe either a spin-up 
or spin-down current at the device’s output. This 
selectivity is achieved by designing a device that 
facilitates current transfer in only one direction.

In our previous studies [6, 9], we conducted 
detailed calculations of spin currents to elucidate 
this perspective. However, the band structure of 
the middle state presents a noteworthy feature 
where a substantial spin current is exclusively 
present on one edge, introducing a unique 
dimension. In particular, on the Fermi surface, 
the velocities of the spin-up and spin-down 
carriers reach zero, contingent on the orbital spin 
intensity, as depicted by the gray shaded segment 
in Fig. 6(c). The manifestation of the spin current 
is confined to the highlighted impulses in green in 
Fig. 6(c).

Control of the Fermi level in the middle state is 
particularly intriguing. Utilizing a gate voltage, as 
illustrated in the figure below, allows placement 
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of the Fermi level in either the hole region (for 
negative gate voltage) or the electron region 
(for positive gate voltage). This precise control 
facilitates the manipulation of carrier types and 
spins, as exemplified by the spin-up and spin-down 
current of holes. The application of a gate voltage 
enables the manipulation of the Fermi level in the 
hole-dominant region, as depicted in Fig. 6(c). The 
energy band illustrates current carriers resembling 
spin-up and spin-down currents, which actively 
participate in the conduction process. However, 
the carriers located on the Fermi surface do not 
contribute to the spin current owing to their zero-
group velocity.

Moreover, by applying a positive gate voltage 
to the electrons, similar computations and 
conclusions can be drawn for holes. This approach 
exhibits high versatility in tailoring the spin 
currents according to the desired output.

CONCLUSION
This extensive research delved into the vast 

potential of advanced electronics using two-
dimensional honeycomb materials. Specifically, 
we investigated ZNRs and uncovered their 
remarkable capabilities, including the generation 
of zero-energy band gaps, manipulation of SOI, 
and facilitation of spin current. Through an in-
depth exploration of the quantum spin Hall state, 
we demonstrated the versatility of the Kane-Mele 
model across various honeycomb lattices.

Our study provided intricate insights into 
the Hamiltonian, conducted comprehensive 
computational analyses of band structures, and 
introduced an innovative spin-filtering technique 
tailored specifically for ZNRs. This groundbreaking 
approach holds great promise for revolutionizing 
spintronics technology, offering a pathway to 
efficiently manipulate spin currents and enhance 
the functionality of future electronic devices. The 
findings of this research contribute significantly 
to the understanding of quantum states in 
honeycomb nanoribbons and can potentially drive 
advancements in electronic technologies based on 
spin.
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