[1] Vinci R. P., Vlassak J. J., (1996), Mechanical behavior of thin films. Annual Rev. Mater. Sci. 26: 431-462.
[2] Zhao M., Xiang Y., Xu J., Ogasawara N., Chiba N., Chen X., (2008), Determining mechanical properties of thin films from the loading curve of nanoindentation testing. Thin Solid Films. 516: 7571-7580.
[3] Pervan P., Valla T., Milun M., (1998), Structural and electronic properties of vanadium ultra-thin film on Cu(100). Surf. Sci. 397: 270-277.
[4] Ngo D., Feng X., Huang Y., Rosakis A. J., (2008), Multilayer thin films/substrate system with variable film thickness subjected to non-uniform misfit strains. Acta Mater. 56: 5322-5328.
[5] Chen S. H., Liu L., Wang T. C., (2007), Small scale, grain size and substrate effects in nano-indentation experiment of film-substrate systems. Int. J. Solids and Struc. 44: 4492-4504.
[6] Li M., Chen W., Cheng Y., Cheng C., (2009), Influence of contact geometry on hardness behavior in nano-indentation.Vacuum. 84: 315-320.
[7] Dhaliwal R. S., Rau I. S., (1970), The axisymmetric boussinesq problem for a thick elastic layer under a punch of arbitrary profile. Int. J. Eng. Sci. 8: 843-856.
[8] Dhaliwal R. S., Rau I. S., (1972), Further consideration on the axisymmetric boussinesq problem. Int. J. Eng. Sci. 10: 659-663.
[9] Yasumoto M., Tomimasu T., (2002), A proposed novel method for thin-film fabrication assisted by mid-infrared free electron laser, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detec. Assoc. Equip. 480: 92-97.
[10] Itaka K., Yamashiro M., Yamaguchi J., Yaginuma S., Haemori M., Koinuma H., (2006), Combinatorial approach to the fabrication of organic thin films. App. Surf. Sci. 252: 2562-2567.
[11] Gurtin M. E., Murdoch A. I., (1975), A continuum theory of elastic material surface. Arch. Ratio. Mech. Anal. 57: 291-323.
[12] Gurtin M. E., Murdoch A. I., (1978), Surface stress in solids. Int. J. Solids and Struc. 14: 431-440.
[13] Mogilevskaya S. G., Crouch S. L., Stolarski H. K.,(2008), Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids. 56: 2298-2327.
[14] Li Z. R., Lim C. W., He L. H., (2006), Stress concentration around a nanoscale spherical cavity in elastic media: effects of surface stress. Europ. J. Mech. A.:Solids. 25: 260-270.
[15] He L. H., Lim C. W., (2006), Surface Green function for a soft elastic half-space: influence of surface stress. Int. J. Solids and Struc. 43: 132-143.
[16] Gordeliy E., Mogilevskaya S. F., Crouch S. L., (2009), Transient thermal stresses in a medium with a circular cavity with surface effects. Int. J. Solids and Struc. 46: 1834-1848.
[17] Koguchi H., (2008), Surface Green function with surface stresses and surface elasticity using Stroh.s formalism. J. Appl. Mech. Transact. ASME. 75: 061014.
[18] Bar On B., Altus E., Tadmor E. B., (2010), Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids and Struct. 47: 1243-1252.
[19] Shen S., Hu S., (2010), A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids.58: 665-677.
[20] Sneddon I. N., (1951), Fourier transforms, McGraw-Hill, New York, Springer.
[21] Selvadurai A. P. S., (2000), Partial differential equations in mechanics, New York, Springer.
[22] Miller R. E., Shenoy V. B., (2000), Size-dependent elastic properties of nanosized structural elements. Nanotech. 11: 139-147.
[23] Shenoy V. B., (2005), Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71: 094104.
[24] Meyers M. A., Chawla K. K., (1999), Mechanical behavior of materials, Prentice-Hall, NJ.