[1] Khatami I., Pashai M. H., Tolou N., (2008), Comparative vibration analysis of a parametrically nonlinear excited oscillator using HPM and numerical method. Mathemat. Problems in Eng. 2008: 1-11.
[2] Gasparini A. M., Saetta A. V., Vitaliani R. V., (1995), on the stability and instability regions of non-conservative continuous system under partially follower forces. Comput. Meth. Appl. Mech. Eng. 124: 63-78.
[3] Osterberg P. M., Senturia S. D., (1997), M-TEST: A test chip for MEMS material property measurements using electrostatically actuated test structures. J. Microelectromech. Syst. 6: 107-118.
[4] Osterberg P. M., Gupta R. K., Gilbert J. R., Senturia S. D., (1994), Quantitative models for the measurement of residual stress, poisson ratio and young.s modulus using electrostatic pull-in of beams and diaphragms. Proceedings of the Solid-State Sensor and Actuator Workshop. Hilton Head, SC.
[5] Sadeghian H., Rezazadeh G., Osterberg P., (2007), Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. IEEE/ASME J. Micro Electro Mech. Sys. 16: 1334-1340.
[6] Salekdeh Y. A., Koochi A., Beni Y. T., Abadyan M., (2012), Modeling effect of three nano-scale physical phenomena on instability voltage of multi-layer MEMS/NEMS: Material size dependency, van der waals force and non-classic support conditions. Trends in Appl. Sci. Res. 7: 1-17.
[7] Batra R. C., Porfiri M., Spinello D., (2007), Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16: R23-R31.
[8] Lin W. H., Zhao Y. P., (2008), Pull-in instability of microswitch actuators: Model review. Int. J. Nonlinear Sci. Numer.Simulation. 9: 175-184.
[9] Koiter W. T., (1964), Couple-stresses in the theory of elasticity: I and II. Proceed. Koninklijke Nederlandse Akademie van Wetenschappen Series B. 6717-6744.
[10] Mindlin R. D., Tiersten H. F., (1962), Effects of couple stresses in linear elasticity. Archive for Rational Mech. Analysis. 11: 415-448.
[11] Toupin R. A., (1962), Elastic materials with couple stresses. Archive for Rational Mech. Analysis. 11: 385–414.
[12] Anthoine A., (2000), Effect of couple-stresses on the elastic bending of beams. Int. J. Solids and Struc. 37: 1003-1018.
[13] Yang F., Chong A. C. M., Lam D. C. C., Tong P., (2002), Couple stress based strain gradient theory for elasticity. Int. J. Solids and Struc. 39: 2731-2743.
[14] Xia W., Wang L., Yin L., (2010), Nonlinear non-classical microscale beams: Static bending, post buckling and free vibration. Int. J. Eng. Sci. 48: 2044-2053.
[15] Asghari M., Rahaeifard M., Kahrobaiyan M. H., Ahmadian M. T., (2011), On the size-dependent behavior of functionally graded micro-beams. Mater. Design. 32: 1435-1443.
[16] Rong H., Huang Q. A., Nie M., Li W.,(2004), An analytical model for pull-in voltage of clamped multilayer beams. Sens. Actuators A. 116: 15-21.
[17] Yang F., Chong A. C. M., Lam D. C. C., Tong P., (2002), Couple stress based strain gradient theory for elasticity. Int. J. Solids and Struc. 39: 2731-2743.
[18] Shengli K., Shenjie Z., Zhifeng N., Kai W., (2011), The size-dependent natural frequency of Bernoulli. Euler microbeams. J. Eng. Sci. 46: 427-437.
[19] Ma H. M., Gao X. L., Reddy J. N., (2008), A microstructure dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. and Physics of Solids. 56: 3379-3391.
[20] Gupta R. K., (1997), Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems. Ph.D. Dissertation, Massachusetts Institute of Technology (MIT), Cambridge, MA.
[21] Zhao J., Zhou S., Wanga B., Wang X., (2012), Nonlinear microbeam model based on strain gradient theory. Appl. Mathemat. Modell. 36: 2674-2686.
[22] Freeman J. A., Skapura D. M., (1992), Neural networks: algorithms, applications, and programming techniques. Addision-Wesley.
[23] Gao D., Kinouchi Y., Ito K., Zhao Z., (2005), Neural networks for event extraction from time series: a back propagation algorithm approach. Future Gener. Comp. Sys. 21: 1096-1105.
[24] Rumelhart D. E., Hinton G. E., Williams R. J., (1986), Learning representations by back propagating error. Nature. 323: 533-536.
[25] Zhang H., Wei W., Mingchen Y., (2012), Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward neural networks. Neurocomputing. 89: 141-146.
[26] Hongmei S., Gaofeng Z., (2011), Convergence analysis of a back-propagation algorithm with adaptive momentum. Neurocomputing. 74: 749-752.
[27] Demuth H., Beale M., (2001), Matlab Neural Networks Toolbox, User.s Guide, The Math Works, Inc., http://www.mathworks.com.