A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Document Type : Reasearch Paper

Authors

Department of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mechanical properties of graphene-like graphitic carbon-nitride (g-C3N4) nanosheets such as Young’s, bulk and shear moduli and Poisson’s ratio. Based on the results, Young’s, bulk and shear moduli of this nanosheet are lower than those of graphene and hexagonal boron-nitride sheet. Besides, it is observed that the values of the aforementioned properties for graphene-like g-C3N4 nanosheets are higher than those of porous graphene and SiC. It is further observed that the Poisson’s ratio of graphene-like g-C3N4 nanosheets is lower than those of any similar two-dimensional graphitic structures.

Keywords

Main Subjects


[1]. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Firsov A. A., (2004), Electric field effect in atomically thin carbon films. Science. 306: 666-669.
[2]. Simchi H., Esmaeilzadeh M., Mazidabadi H., (2013), The electronic transport properties of porous zigzag graphene clusters. Physica E: Low-Dimens. Systems and Nanostruc. 54: 220-225.
[3]. Ansari R., Ajori S., Motevalli B., (2012), Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlat. Microstruc. 51: 274-289.
[4]. Ansari R., Motevalli B., Montazeri A., Ajori S., (2011), Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Communications. 151: 1141-1146.
[5]. Ansari R., Malakpour S., Faghihnasiri M., Ajori S., (2013), Characterization of the mechanical properties of monolayer molybdenum disulfide nanosheets using first principles. J. Nanotechnol. Engineer. Medicine. 4: 034501-034507.
[6]. Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C. Y., Wang F., (2010), Emerging photoluminescence in monolayer MoS2. Nano Letters. 10: 1271-1275.
[7]. Ansari R., Ajori S. Malakpour S., (2016), Characterization of elastic properties of porous graphene using an Ab Initio Study. J. Ultrafine Grained Nanostruct. Mater. 49: 97-102.
[8]. Ouyang T., Chen Y., Xie Y., Yang K., Bao Z., Zhong J., (2010), Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnol. 21: 245701-245708.
[9]. Ajori S., Ansari R., (2014), Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations. Current Appl. Phys. 14: 1072-1077.
[10]. Min K., Aluru N. R., (2011), Mechanical properties of graphene under shear deformation. Appl. Phys. Lett. 98: 013113-013117.
[11]. Ansari R., Ajori S., Malakpour S., (2016), Prediction of structural and mechanical properties of atom-decorated porous graphene via density functional calculations. The Europ. Phys. J. Appl. Phys. 74: 10401-10406.
[12]. Nag A., Raidongia K., Hembram K. P., Datta R., Waghmare U. V., Rao C. N. R., (2010), Graphene analogues of BN: Novel synthesis and properties. ACS Nano. 4: 1539-1544.
[13]. Topsakal M., Cahangirov S., Ciraci S., (2010), The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96: 091912-091918.
[14]. Verma V., Jindal V. K., Dharamvir K., (2007), Elastic moduli of a boron nitride nanotube. Nanotechnol. 18: 435711-435718.
[15]. Bekaroglu E., Topsakal M., Cahangirov S., Ciraci S., (2010), First-principles study of defects and adatoms in silicon carbide honeycomb structures. Physic. Rev. B. 81: 075433-075439.
[16]. Jungthawan S., Reunchan P., Limpijumnong S., (2013), Theoretical study of strained porous graphene structures and their gas separation properties. Carbon. 54: 359-364.
[17]. Civalek O., Akgöz B. (2013), Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. Comp. Mater. Sci. 77: 295-303.
[18]. Zhao S., Xue J., (2013), Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. J. Phys. D: Appl. Phys. 46: 135303-135309.
[19]. Akgöz B., Civalek O., (2015), A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mechanica. 226: 2277-2294.
[20]. Mercan K, Civalek O., (2016), DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos. Struc. 143: 300-309.
[21]. Lee C. G, Wei X. D., Kysar J. W., Hone J., (2008), Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321: 385–388.
[22]. Zhi C. Y., Bando Y., Tang C. C., Huang Q., Golberg D., (2008), Boron nitride nanotubes: Functionalization and composites. J. Mater. Chem. 18: 3900-3908.
[23]. Radisavljevic B., Radenovic A., Brivio J., Giacometti I. V., Kis A., (2011), Single-layer MoS2 transistors. Nature Nanotechnol. 6: 147-150.
[24]. Mak K. F., Lee C., Hone J., Shaz J., Heinz T. F., (2010), Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105: 136805-136809.
[25]. Reunchan P., Jhi S. H., (2011), Metal-dispersed porous graphene for hydrogen storage. Appl. Phys. Let. 98: 093103-093109.
[26]. Premkumar T., Geckeler K. E. (2012), Graphene–DNA hybrid materials: Assembly, applications, and prospects. Progress in Polym. Sci. 37: 515-529.
[27]. Li X., Wang H., Robinson J. T., Sanchez H., Diankov G., Dai H., (2009), Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131: 15939-15944.
[28]. Li X., Cai W., An J., Kim S., Nah J., Yang D., Banerjee S. K., (2009), Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 324: 1312-1314.
[29]. Zhang Y., Tang T. T., Girit C., Hao Z., Martin M. C., Zettl A., Wang F., (2009), Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 459: 820-823.
[30]. Kroke E., Schwarz M., (2004), Novel group 14 nitrides. Coordinat. Chem. Rev. 248: 493-532.
[31]. Goglio G., Foy D., Demazeau G., (2008), State of art and recent trends in bulk carbon nitrides synthesis. Mater. Sci. Eng: Reports. 58: 195-227.
[32]. Horvath-Bordon E., Riedel R., Zerr A., McMillan P. F., Auffermann G., Prots Y., Kroll P., (2006), High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 35: 987-1014.
[33]. Omomo Y., Sasaki T., Wang L., Watanabe M., (2003), Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125: 3568-3575.
[34]. Ithurria S., Tessier M. D., Mahler B., Lobo R. P. S M., Dubertret B., Efros A. L., (2011), Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater. 10: 936-941.
[35]. Geim A. K., Novoselov K. S., (2007), The rise of graphene. Nature Mater.  6: 183-191.
[36]. Li C., Yang X., Yang B., Yan Y., Qian Y., (2007), Synthesis and characterization of nitrogen-rich graphitic carbon nitride. Mater. Chem. Phys. 103: 427-432.
[37]. Bojdys M. J., Müller J. O., Antonietti M., Thomas A., (2008), Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem: A. Europ. J. 14: 8177-8182.
[38]. Zhen-Yi F., Yu-Xian L., (2003), Effective route to graphitic carbon nitride from ball-milled amorphous carbon in NH3 atmosphere under annealing. Chinese Phys. Let. 20: 1554-1561.
[39]. Zhao H., Chen X., Jia C., Zhou T., Qu X., Jian J., Zhou T., (2005), A facile mechanochemical way to prepare gC 3 N 4. Mater. Sci. Engineer: B. 122: 90-93.
[40]. Goglio G., Foy D., Pechev S., Majimel J., Demazeau G., Guignot N., Andrault D., (2009), Evidence for a low-compressibility carbon nitride polymorph elaborated at ambient pressure and mild temperature. Diam. Related Mater. 18: 627-631.
[41]. Jürgens B., Irran E., Senker J., Kroll P., Müller H., Schnick W., (2003). Melem (2, 5, 8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR and theoretical studies. J. Am. Chem. Soc. 125: 10288-10300.
[42]. Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Antonietti M., (2009), A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Mater. 8: 76-80.
[43]. Wang Y., Wang X., Antonietti M., (2012), Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angewa. Chemie. Int. Edition. 51: 68-89.
[44]. Niu P., Liu G., Cheng H. M. (2012), Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C. 116: 11013-11018.
[45]. Wang Y., Hong J., Zhang W., Xu R., (2013), Carbon nitride nanosheets for photocatalytic hydrogen evolution: Remarkably enhanced activity by dye sensitization. Catalysis Sci. Technol. 3: 1703-1711.
[46]. Yan H., Chen Y., Xu S., (2012), Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy. 37: 125-133.
[47]. Fang Y., Lv Y., Che R., Wu H., Zhang X., Gu D., Zhao D., (2013), Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135: 1524-1530.
[48]. Zhang Y., Mori T., Niu L., Ye J., (2011), Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy & Environ. Sci. 4: 4517-4521.
[49]. Zhang Y., Mori T., Ye J., Antonietti M., (2010), Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132: 6294-6295.
[50]. Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y., (2012), Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135: 18-21.
[51]. Baroni S., Corso D. A., Gironcoli S., Giannozzi P., Cavazzoni C., Ballabio G., Scandolo S., Chiarotti G., Focher P., Pasquarello A., Laasonen K., Trave A., Car R., Marzari N., Kokalj A., http://www.pwscf.org/.
[52]. Perdew J. P., Burke K., Ernzerhof M., (1996), Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865-3871.
[53]. Perdew J. P., Burke K., Wang Y., (1998), Erratum: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 57: 14999-15008.
[54]. Monkhorst H. J., Pack J. D., (1976), Special points for Brillouin-zone integrations. Phys. Rev. B. 13: 5188-5196.
[55]. Wagner P., Ivanovskaya V. V., Rayson M. J., Briddon P. R., Ewels C. P., (2013), Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition. J. Phys: Condens. Matt. 25: 155302-155309.
[56]. Zhukovskii Y. F., Piskunov S., Pugno N., Berzina B., Trinkler L., Bellucci S., (2009), Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches. J. Phys. Chem. Solids. 70: 796-803.