[1] Sedigh Ziabari S. A, Tavakoli Saravani M. J., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.
[2] Talukdar K, Bhushan M, Kasi Viswanathc A, Mitrad A. K., (2013), Simulation study of the performance of a biologically sensitive field effect transistor. Int. J.Nano Dimens. 4: 85-89.
[3] Xie Q., Lee C. J., Xu J., Wann C., Sun J. Y. C., Taur Y., (2013), Comprehensive analysis of short-channel effects in ultrathin SOI MOSFETs. IEEE Trans. Electron Devices. 60: 1814-1819.
[4] Novoselov K. S., Geim A. K., Morozov S. V., (2004), Electric field effect in atomically thin carbon films. Science. 306: 666–669.
[5] NOVOSELOV K. S., (2011), Graphen: Materials in the finland. Int. J. Mod. Phys. B. 25: 4081–4106.
[6] Nomura K., MacDonald A. H., (2007), Quantum transport of massless dirac fermions. Phys. Rev. Lett. 98: 76602-76609.
[7] Han M. Y., Zyilmaz B., Zhang Y., Kim P., ( 2007), Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98: 206805-206809.
[8] Zhou S. Y., Gweon G.-H., Fedorov A. V., ( 2007), Substrate-induced band gap opening in epitaxial graphene. Nat. Mater. 6: 770-775.
[9] Abband Pashaki R., Sedigh Ziabari S. A., (2015), Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET. Int. J. Nano Dimens. 6: 377-383.
[10] Marulanda J. M., ‘Carbon nanotubes’ (InTech, 2010).
[11] Algul B. P., Kodera T., Oda S., Uchida K., (2011), Study on device parameters of carbon nanotube field electron transistors to realize steep subthreshold slope of less than 60 mV/Decade. Jpn. J. Appl. Phys. 50: 04DN01.
[12] Medury A. S., Bhat K. N., Bhat N., ( 2012), Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor. J. Appl. Phys. 112: 024513-024518.
[13] Vaddi R., Agarwal R. P., Dasgupta S., (2012), Compact modeling of a generic double-gate MOSFET with gate–S/D underlap for subthreshold operation. IEEE Trans. Electron Devices. 59: 2846–2849.
[14] Baruah R. K., (2012), Silicon vs. germanium junctionless double-gate field effect transistor. Int. Conf. on Devices.Circuits and Systems (ICDCS)’ (IEEE, 2012). 235–238
[15] Woo J.-H., Choi J.-M., Choi Y.-K., (2013), Analytical threshold voltage model of junctionless double-gate MOSFETs with localized charges. IEEE Trans. Electron Devices. 60: 2951–2955.
[16] Colinge J. P., Kranti A., Yan, R., (2011), Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid. State. Electron. 65-66: 33–37.
[17] BaruahR. K., Paily R. P., (2014), A dual-material gate junctionless transistor with high- (k) spacer for enhanced analog performance. IEEE Trans. Electron Devices. 61: 123–128.
[18] Haijun L., Lining Zh., Yunxi Zh., ( 2012), A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Devices. 59: 1829–1836.
[19] Lee C.-W., Borne A., Ferain I., (2010), High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices. 57: 620–625.
[20] Dehdashti Akhavan N., Ferain I., Razavi P., Yu R., Colinge J.-P., (2011), Improvement of carrier ballisticity in junctionless nanowire transistors. Appl. Phys. Lett. 98: 103510-103516.
[21] Pourian P., Yousefi R., Ghoreishi S. S., (2016), Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: Numerical study. Superlat. Microstruct. 93: 92-100.
[22] Saito R., Dresselhaus G., Dresselhaus M. S., (2016), Physical properties of carbon nanotubes. (PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1998).
[23] Datta S., Van Houten H., (1996), Electronic transport in mesoscopic systems. Phys. Today. 49: 70-76.
[24] Guo J. G. J., Datta S., Anantram M. P., Lundstrom M., (2004), Atomistic simulation of carbon nanotube field-effect transistors using non-equilibrium Green’s function formalism. Electrical Performance of Electronic Packaging IWCE-04’ (IEEE, 2004). 71–72.
[25] Datta S., (2005), Quantum transport : atom to transistor. (Cambridge University Press, 2005).
[26] Guo J., Datta S., Lundstrom M., Anantam M. P., (2004), Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2: 257–276.
[27] Javey A., Lundstrom M., (2004), Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. IEEE Int. Electron Devices Meet. IEEE. 703-706.
[28] Yoon Y., (2007), Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Trans. Electron Devices. 54: 1280-1287.