Thermal and electrical conductivity of Aluminium Nitride nanofluids

Document Type : Reasearch Paper

Authors

1 Department of Mechanical Engineering, University of Port Harcourt, Port Harcourt, Nigeria.

2 Department of Mechanical Engineering, University of Ibadan, Ibadan, Nigeria.

Abstract

This study was designed to experimentally measure the thermal and electrical conductivities of Aluminium Nitride/Ethylene Glycol (AlN/EG) nanofluids. Transmission electron microscopy (TEM) was used to characterize the shape of AlN nanoparticles. Nanofluids with different particle volume concentrations of 0.5%, 1%, 2%, 3%, 4%, and 5% were utilized. The thermal and electrical conductivities of the nanofluids were measured using a KD2-Pro thermal analyser and electrical conductivity meter, respectively. The obtained results revealed that the thermal conductivity of the nanofluids increased at the higher volume concentration of the nanoparticles. Thus, at 5% volume concentration, the maximum thermal conductivity enhancement of 25% was obtained. The addition of AlN nanoparticles to the EG base fluid resulted in a significant increase in the electrical conductivity of the nanofluid. An enhancement in the electrical conductivity of approximately 520 times relative to the base fluid was attained by loading a 0.5% volume concentration of AlN in EG at 28°C.

Keywords

Main Subjects


[1]           Salamon V., Senthil Kumar D., Thirumalini S., (2017), Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant, IOP Conf.  Ser. Mater.  Sci. Eng.  225: 012101-012107.
[2]           Subhedar D. G., Ramani B. M., Gupta A., (2018), Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. Case Studies in Thermal Eng. 11: 26–34.
[3]           Huminic G., Huminic A., (2012), Application of nanofluids in heat exchangers: A review. Renew. Sustain. Energy Rev. 16: 5625–5638.
[4]           Pourfarzad E., Ghadiri K., Behrangzade A., Ashjaee M., (2018), Experimental investigation of heat transfer and pressure drop of alumina–water nano-fluid in a porous miniature heat sink. Exp. Heat Transfer. 2018: 1-18.
[5]           Zhang S., Han X., (2018), Effect of different surface modified nanoparticles on viscosity of nanofluids. Adv. Mechanic. Eng. 10: 1–8.
[6]           Usri N. A., Azmi W. H., Mamat R., Abdul Hamid K., Najafi G., (2015), Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Proc. 79: 397– 402.
[7]           Lee J.-H., Lee S.-H., Choi C., Jang S., Choi S., (2010), A review of thermal conductivity data, mechanisms and models for nanofluids. Int. J. Micro-Nano Scale Transp. 1: 269-322.
[8]           Fan J., Wang L., (2011), Review of heat conduction in nanofluids. J. Heat Transfer. 133: 040801.
[9]           Ahmadi M. H., Mirlohi A., Nazari M. A., Ghasempour R., (2018), A review of thermal conductivity of various nanofluids. J. Mol. Liq. 265: 181–188.
[10]         Kakavandi A., Akbari M., (2018), Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int. J. Heat Mass Transfer. 124: 742-751.
[11]         Shah J., Ranjan M., Davariya V., Gupta S. K., Sonvane Y., (2017), Temperature-dependent thermal conductivity and viscosity of synthesized a-alumina nanofluids.  Appl. Nanosci. 7: 803–813.
[12]         Shoghl S. N., Jamali J., Moraveji M. K., (2016), Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp. Therm. Fluid Sci. 74: 339-346.
[13]         Akilu S., Sharma K. V., Aklilu T. B., Mior Azman M. S., Bhaskoro P. T., (2016), Temperature dependent properties of silicon carbide nanofluid in binary mixtures of glycerol-ethylene-glycol. Proced. Eng. 148: 774-778.
[14]         Islam M. R., Shabani B., Rosengarten G., (2017), Electrical and thermal conductivites of 50/50 water-ethylene glycol based TiO2 nanofluids to be used as coolants in PEM fuel cells. Energy Proced. 110: 101-108.
[15]         Poongavanam G. K., Murugesan R., Ramalingam V., (2018), Thermal and electrical conductivity enhancement of solar glycol-water mixture containing MWCNTs. Fullerenes, Nanotubes and Carbon Nanostruc. 26: 871–879.
[16]         Arani A. A. A., Pourmoghadam F., (2019), Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/ethylene glycol hybrid Nanofluid: Providing new thermal conductivity correlation. Heat Mass Transfer. 55: 2329-2339.
[17]         Amini F., Miry S. Z., Karimi A., Ashjaee M., (2018), Experimental investigation of thermal conductivity and viscosity of SiO2 /multiwall carbon nanotube hybrid nanofluid. J. Nanosci. Nanotechno. 18: 1–10.
[18]         Hamid K. A., Azmi W. H., Nabil M. F., Mamat R., Sharma K. V., (2018), Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids.  Int. J. Heat Mass Transfer.  116: 1143–1152.
[19]         Li H., Wang L., He Y., Hu Y., Zhu J., Jiang B., (2015), Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 88: 363–368.
[20]         Keyvani M., Afrand M., Toghraie D., Mahdi R., (2018), An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: Developing a new correlation. J. Mol. Liq.  266: 211–217.
[21]         Alawi O. A., Sidik N. A. C., Xian H. W., Kean T. H., Kazi S. N., (2018), Thermal conductivity and viscosity models of metallic oxides nanofluids.  Int. J. Heat Mass Transfer. 116: 1314–1325.
[22]         Parametthanuwat T., Bhuwakietkumjohn N., Rittidech S.,  Ding Y., (2015), Experimental investigation on thermal properties of silver nanofluids. Int. J. Heat Fluid Flow. 56: 80–90.
[23]         Singh D., Timofeeva E., Yu W., Routbort J., France D., Smith D., Lopez-Cepero J. M., (2009), An investigation of silicon carbide-water nanofluid for heat transfer applications. J. Appl. Phys. 105: 064306.
[24]         Hu P., Shan W., Yu F., Chen Z., (2008), Thermal conductivity of AlN-Ethanol nanofluids. Int. J. Thermophys. 29: 1968-1973.
[25]         Esmaeili E., Rounaghi S. A., Gruner W., Eckert J., (2019), The preparation of surfactant-free highly dispersed ethylene glycol-based aluminum nitride-carbon nanofluids for heat transfer application. Adv. Powder Technol. 30: 2032–2041.
[26]         Yu W., Xie H., Li Y., Chen L., (2011), Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology. 9: 187–191.
[27]         Zyła G., Fal J., (2016), Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids. Thermochim Acta. 637: 11–16.
[28]         Baby T. T., Ramaprabhu S., (2010), Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys.108: 124308.
[29]         Teng T.-P., Cheng C.-M., Pai F.-Y., (2011), Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system. Nanoscale Res. Lett. 6: 293-298.
[30]         Maxwell  J. C., A treatise on electricity and magnetism. Oxford: Clarendon, 1891.
[31]         Jeffrey D. J., (1973), Conduction through a random suspension of spheres, in Proceedings of Royal Society, 355–367.
[32]         Vajjha R. S., Das D. K., (2009), Experimental determination of thermal conductivity of three nanofluids and development of new correlation. Int. J. Heat Mass Transfer. 52: 4675-4682.
[33]         Esfe M. H., Saedodin S., (2014), Experimental investigation and proposed correlations for temperature-dependent thermal conductivity enhancement of ethylene glycol based nanofluid containing ZnO nanoparticles. J. Heat Mass Transfer Res. 1: 47-54.
[34]         Murshed S. M. S., Leong K. C., Yang C., (2008), Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47: 560-568.
[36]         Maxwell J., A Treatise on Electricity and Magnetism, 2nd ed. Clarendon Press, 1954.
[37]         Adio S. A., Sharifpur M., Meyer J. P., (2015), Factors affecting the pH and electrical conductivity of MgO-ethylene glycol nanofluids. Bull. Mater. Sci. 38: 1345-1357.