[1] Lee C.-W., Afzalian A., Akhavan N. D., Yan R., Ferain I., Colinge J.-P., (2009), Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94: 053511.
[2] Kumar M. J., Janardhanan S., (2013), Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices. 60: 3285-3290.
[3] Coquand R., Barraud S., Cassé M., Leroux P., Vizioz C., Comboroure C., Perreau P., Ernst E., Samson M.-P., Maffini-Alvaro V., (2013), Scaling of high-κ/metal-gate TriGate SOI nanowire transistors down to 10 nm width. Solid State Electron. 88: 32-36.
[4] Park J.-T., Colinge J.-P., (2002), Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices. 49: 2222-2229.
[5] Colinge J.-P., Lee C.-W., Afzalian A., Akhavan N. D., Yan R., Ferain I., Razavi P., O'neill B., Blake A., White M. J. N. N., (2010), Nanowire transistors without junctions. Nat. Nanotechnol. 5: 225-229.
[6] Han M.-H., Chang C.-Y., Chen H.-B., Wu J.-J., Cheng Y.-C., Wu, Y.-C., (2013), Performance comparison between bulk and SOI junctionless transistors. IEEE Electron Device. Lett. 34: 169-171.
[7] Gundapaneni S., Ganguly S., Kottantharayil A., (2011), Bulk planar junctionless transistor (BPJLT): An attractive device alternative for scaling. IEEE Electron Device. Lett. 32: 261-263.
[8] Su C.-J., Tsai T.-I., Liou Y.-L., Lin Z.-M., Lin H.-C., Chao T.-S, (2011), Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device. Lett. 32: 521-523.
[9] Ávila-Herrera F., Paz B., Cerdeira A., Estrada M., Pavanello M., (2016), Charge-based compact analytical model for triple-gate junctionless nanowire transistors. Solid State Electron. 122: 23-31.
[10] Bozorgi Golafzani, A., Sedigh Ziabari S. A., (2020), Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics. Int. J. Nano Dimens. 11: 12-17.
[11] Zhang Q., Zhao W., Seabaugh A., (2006), Low-subthreshold-swing tunnel transistors. IEEE Electron Device. Lett. 27: 297-300.
[12] Ahangari Z., (2019), Novel attributes of steep-slope staggered type heterojunction p-channel electron-hole bilayer tunnel field effect transistor. Int. J. Nano Dimens. 10: 391-399.
[13] Koswatta S. O., Lundstrom M. S., Nikonov D. E., (2009), Performance comparison between pin tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices. 56: 456-465.
[14] Palanichamy V., Kulkarni N., Thankamony Sarasam A. S., (2019), Improved drain current characteristics of tunnel field effect transistor with heterodielectric stacked structure. Int. J. Nano Dimens. 10: 368-374.
[15] Novoselov K., Morozov S., Mohinddin T., Ponomarenko L., Elias D., Yang R., Barbolina I., Blake P., Booth T., Jiang D., (2007), Electronic properties of graphene. Phys. Status Solidi (b). 244: 4106-4111.
[16] Ghoreishi S. S., Yousefi R., (2017), A computational study of a novel graphene nanoribbon field effect transistor. Int. J. Mod. Phys. B. 31: 1750056 (14 pages).
[17] Tamersit K., (2019), A new ultra-scaled graphene nanoribbon junctionless tunneling field-effect transistor: Proposal, quantum simulation, and analysis. J. Comput. Electron. 1-7.
[18] Tahaei S. H., Ghoreishi S. S., Yousefi R., Aderang H., (2019), A computational Sstudy of a heterostructure tunneling Carbon nanotube field-effect transistor. J. Electron. Mater. 48: 7048-7054.
[19] Tamersit K., (2020), Computational study of pn Carbon nanotube tunnel field-effect transistor. IEEE Trans. Electron Devices. 67: 704-710.
[20] Yang L., Anantram M., Han J., Lu, J., (1999), Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B. 60: 13874-13878.
[21] Sheikhi M. H., (2009), Effect of strain on the performance of MOSFET-like and p–i–n carbon nanotube FETs. Solid State Electron. 53: 497-503.
[22] Pourian P., Yousefi R., Ghoreishi S. S., (2016), Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: Numerical study. Superlat. Microstruct. 93: 92-100.
[23] Venugopal R., Ren Z., Datta S., Lundstrom M. S., Jovanovic D., (2002), Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches. J. Appl. Phys. 92: 3730-3739.
[24] Guo J., Datta S., Lundstrom M., Anantam M., (2004), Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Com. 2: 257–276.
[25] Guo J., (2004), Carbon nanotube electronics: modeling, physics, and applications. Purdue University.
[26] Ren Z., (2001), Nanoscale MOSFETs: Physics, simulation, and design. Purdue University, 41-64.
[27] Datta S., (1997), Electronic transport in mesoscopic systems. Cambridge university press.
[28] Yoon Y., Guo J., (2007), Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Trans. Electron Devices. 54: 1280-1287.
[29] Harrison W., (1989), Electronic structure and the properties of solids. The physics of the chemical bond., ch. 11, Mixed tetrahedral solids. Dover Publications, Inc.
[30] Natsuki T., Tantrakarn K., Endo M., (2004), Effects of carbon nanotube structures on mechanical properties. Appl. Phys. A. 79: 117-124.
[31] Yousefi R., Ghoreishi S. S., (2012), A computational study of strain effects in the band-to-band-tunneling carbon nanotube field-effect transistors. Int. J. Mod. Phys. B. 26: 1250155.
[32] Faraji M., Ghoreishi S. S., Yousefi R., (2018), Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET). Int. J. Nano Dimens. 9: 32-40.