A critical review on nanoparticle-assisted enhanced Oil recovery: Introducing scaling approach

Document Type : Review

Authors

1 Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SKS4S 0A2, Canada.

2 Petroleum and Mining Engineering, School of Applied Science and Engineering, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.

Abstract

Nanotechnology has the capability to modernize both the upstream and downstream oil and gas industry. It has been effectively used in exploration, drilling, production, refinery as well as in enhanced oil recovery (EOR) fields. Understanding the basics of scaling criteria development along with nanoparticle stabilized EOR mechanism will assist petroleum engineers in designing, analyzing, and evaluating nanoparticle-assisted EOR techniques. This paper aims to deliver a critical review on nanoparticle-assisted EOR methods along with introducing scaling approaches and their applications in EOR. Scaling criteria can be employed to assess the performance of a specific EOR technique so that it can be accurately applied to the field scale. In this study, scaling criteria or dimensionless approaches are briefly summarized along with their applications in EOR. In addition, it reviews how scaling criteria can be derived using a mathematical model along with their benefits and shortcomings. This work concentrates on assessing the application of nanoparticles in EOR processes and addresses the process controlling parameters. This study briefly evaluates a few appropriate analytical and semi-analytical studies directly related to nanoparticle-assisted EOR techniques. Several nanoparticles assisted experimental works have been reviewed for both core flooding and micromodel systems.

Keywords


  1. Sadanandan M., Bhaskaran B., (2014), Zirconium (IV) tungstate nanoparticles prepared through chemical co-precipitation method and its function as solid acid catalyst. Appl. Nanosci. 4: 711-718.
  2. Zienkiewicz-Strzałka M., Deryło-Marczewska A., Kozakevych R. B., (2018), Silica nanocomposites based on silver nanoparticles-functionalization and pH effect. Appl. Nanosci. 8: 1649-1668.
  3. Agista M. N., Guo K., Yu Z., (2018), A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery. Appl. Sci. 8: 871-877.
  4. Hendraningrat L., Zhang J., (2015), Polymeric nanospheres as a displacement fluid in enhanced oil recovery. Appl. Nanosci. 5: 1009-1016.
  5. Hashemi S. I., Fazelabdolabadi B., Moradi S., Rashidi A. M., Shahrabadi A., Bagherzadeh H., (2016), On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix. Appl. Nanosc. 6: 71-81.
  6. Kapusta S., Balzano L., Te Riele P., (2012), Nanotechnology applications in oil and gas exploration and production. Presented at the International Petroleum Technology Conference held in Bangkok, Thailand, 7-9 February. Paper SPE 15152.
  7. Metin C. O., Bonnecaze R. T., Lake L. W., Miranda C. R., Nguyen Q. P., (2014), Aggregation kinetics and shear rheology of aqueous silica suspensions. Appl. Nanosc. 4: 169-178.
  8. Fletcher A., Davis J., (2010), How EOR can be transformed by nanotechnology. Presented at the SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 24-28 April. Paper SPE 129531. 
  9. Ayatollahi S., Zerafat M. M., (2012), Nanotechnology-assisted EOR techniques: new solutions to old challenges. Presented at the SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12-14 June. Paper SPE 157094.
  10. El-Diasty A. I., Aly A. M., (2015), Understanding the mechanism of nanoparticles applications in enhanced oil recovery. Presented at the SPE North Africa Technical Conference and Exhibition held in Cairo, Egypt, 14-16 September. Paper SPE 175806.
  11. Negin C., Ali S., Xie Q., (2016), Application of nanotechnology for enhancing oil recovery–A review. Petroleum. 2: 324-333.
  12. Sun X., Zhang Y., Chen G., Gai Z., (2017), Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies. 10: 345-351.
  13. Ahmadi Y., Eshraghi S. E., Bahrami P., Hasanbeygi M., Kazemzadeh Y., Vahedian A., (2015), Comprehensive Water–Alternating-Gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests. J. Petrol. Sci. Eng. 133: 123-129.
  14. Sun X., Dong M., Zhang Y., Maini B. B., (2015), Enhanced heavy oil recovery in thin reservoirs using foamy oil-assisted methane huff-n-puff method. Fuel. 159: 962-973.
  15. Vargo J., Turner J., Vergnani B., Pitts M. J., Wyatt K., Surkalo H., Patterson D., (1999), Alkaline-surfactant-polymer flooding of the Cambridge Minnelusa field. Presented at the SPE Rocky Mountain Regional Meeting held in Gillette, Wyoming, USA, 15-18 May. Paper SPE 55633.
  16. Chang H. L., Zhang Z. Q., Wang Q. M., Xu Z. S., Guo Z. D., Sun H. Q., Qiao Q., (2006), Advances in polymer flooding and alkaline/surfactant/polymer processes as developed and applied in the People's Republic of China. J. Petrol. Technol. 58: 84-89.
  17. Krishnamoorti R., (2006), Technology tomorrow: Extracting the benefits of nanotechnology for the Oil industry. J. Petrol. Technol. 58: 24-26.
  18. Zhang L. D., Liu Y., (2001), Preparation and application technology for ultrafine powder. J. North China Inst. Technol. 22: 32-43.
  19. Asadikia A., Mirjalily S. A. A., Nasirizadeh N., Kargarsharifabad H., (2020), Characterization of thermal and electrical properties of hybrid nanofluids prepared with multi-walled carbon nanotubes and Fe2O3 nanoparticles. Int. Communic. Heat and Mass Transfer. 117: 104603-104607.
  20. Asadikia A., Mirjalily S. A. A., Nasirizadeh N., Kargarsharifabad H., (2020), Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties. Int. J. Nano Dimens.11: 277-289.
  21. Shoeibi S., Rahbar N., Esfahlani A. A., Kargarsharifabad H., (2021), Improving the thermoelectric solar still performance by using nanofluids–Experimental study, thermodynamic modeling and energy matrices analysis. Sustain. Energy Technol. Assessm.47: 101339-101344.
  22. Doscher T. M., (1980), Scaled physical model studies of the steam drive process. First annual report, September 1977-September. University of Southern California, Dec 1, Los Angeles, USA.
  23. Purvis G., Bentsen R. G., (1988), A Hele-Shaw cell study of a new approach to instability theory in porous media. J. Canad. Petrol. Technol. 27: 87-95.
  24. Bridgman P. W., (1931), Dimensional analysis. 1st ed., Yale University Press: New Haven, USA, pp. 1-120.
  25. Leverett M. C., Lewis W. B., True M. E., (1942), Dimensional-model studies of oil-field behavior. Transact. AIME. 146: 175-193.
  26. Murphy Glenn C. E., (1950), Similitude in Engineering. 1 May, pp. 1-41.
  27. Langhaar H. L., (1951), Dimensional Analysis and Theory of Models. Chapman and Hall, New York, London.
  28. Mattax C. C., Kyte J. R., (1962), Imbibition oil recovery from the fractured, water-driven reservoir. Soc. Petrol. Eng. J. 2: 177-184.
  29. Engelberts W. F., Klinkenberg L. J., (1951), Laboratory experiments on the displacement of oil by water from packs of granular material. Presented at the 3rd World Petroleum Congress. Paper WPC 4138.
  30. Rapoport L. A., Leas W. J., (1953), Properties of linear waterfloods. J. Petrol. Technol. 5: 139-148.
  31. Rapoport L. A., (1955), Scaling laws for use in design and operation of water-oil flow models. Transact. AIME. 204: 143-150.
  32. Craig Jr F. F., Geffen T. M., Morse R. A., (1955), Oil recovery performance of pattern gas or water injection operations from model tests. Transact. AIME. 204: 7-15.
  33. Geertsma J., Croes G. A., Schwarz N., (1956), Theory of dimensionally scaled models of petroleum reservoirs. Transact. AIME. 207: 118-127.
  34. Van Meurs P., (1957), The use of transparent three-dimensional models for studying the mechanism of flow processes in oil reservoirs. Transact. AIME. 210: 295-301.
  35. Bobek J. E., Bail P. T., (1961), Model studies of oil displacement from thin sands by vertical water influx from adjacent shales. J. Petrol. Technol. 13: 950-954.
  36. Carpenter Jr C. W., Bail P. T., Bobek J. E., (1962), A verification of waterflood scaling in heterogeneous communicating flow models. Soc. Petrol. Eng. J. 2: 9-12.
  37. Sève B. J., Pottier J., (1963), French engineers review soviet modeling practices. J. Petrol. Technol. 15: 581-588.
  38. Happy F. A. (2018). Theoretical and numerical investigation of the rheology of heavy crude oil. Master’s Thesis, Memorial University of Newfoundland, St. John’s, Canada, September.
  39. Happy F. A., Rahman A., Imtiaz S., Hossain M. E., (2020), A critical review of engineering approach in the context of memory concept for fluid flow through porous media. J. Porous Media. 23: 593-611.
  40. Rahman A., (2018), Development of scaling criteria and numerical simulation study of steam flooding process. Master’s Thesis, Memorial University of Newfoundland, St. John’s, Canada, May.
  41. Sonin A. A., (2001), The Physical Basis of Dimensional Analysis. 2nd ed., Massachusetts Institute of Technology, Technical Report, USA.
  42. Buckingham E., (1914), On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4: 345-376.
  43. Rahman A., Ahmed S., Hossain M. E., Happy F. A., (2020), Development of scaling criteria for steam flooding EOR process. J. Petrol. Explor. Produc. Technol. 10: 3849–3863.
  44. Rahman A., Happy F. A., Ahmed S., Hossain M. E., (2017), Development of scaling criteria for enhanced oil recovery: A review. J. Petrol. Sci. Eng. 158: 66-79.
  45. Shook M., Li D., Lake L. W., (1992), Scaling immiscible flow through permeable media by inspectional analysis. In Situ-New York. 16: 311-311.
  46. Ruark A. E., (1935), Inspectional analysis: A method which supplements dimensional analysis. J. Elisha Mitchell Sci. Soc. 51: 127-133.
  47. Novakovic D., (2002), Numerical reservoir characterization using dimensionless scale numbers with application in upscaling. Doctoral. Dissertation, Louisiana State University, Louisiana, USA, August.
  48. Sulochana C., Sandeep N., (2016), Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Appl. Nanosc. 6: 451-459.
  49. Binks B. P., Horozov T. S., (Eds.). (2006), Colloidal particles at liquid interfaces. 1st ed., Cambridge University Press: New York, USA, pp. 1-520.
  50. Ko S., Huh C., (2019), Use of nanoparticles for oil production applications. J. Petrol. Sci. Eng.172: 97-114.
  51. Singh R., Mohanty K. K., (2016), Foams stabilized by in-situ surface-activated nanoparticles in bulk and porous media. SPE J. 21: 121-130.
  52. Yao K. M., Habibian M. T., O'Melia C. R., (1971), Water and wastewater filtration. Concepts and applications. Environ. Sci. Technol. 5: 1105-1112.
  53. Elimelech M., O'Melia C. R., (1990), Kinetics of deposition of colloidal particles in porous media. Environ. Sci. Technol. 24: 1528-1536.
  54. He F., Zhang M., Qian T., Zhao D., (2009), Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. J. Colloid Interf. Sci. 334: 96-102.
  55. Chengara A., Nikolov A. D., Wasan D. T., Trokhymchuk A., Henderson D., (2004), Spreading of nanofluids driven by the structural disjoining pressure gradient. J. Colloid Interf. Sci. 280: 192-201.
  56. Espinoza D. A., Caldelas F. M., Johnston K. P., Bryant S. L., Huh C., (2010), Nanoparticle-stabilized supercritical CO2 foams for potential mobility control applications. Presented at the SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 24-28 April. Paper SPE 129925.
  57. Ehtesabi H., Ahadian M. M., Taghikhani V., Ghazanfari M. H., (2014), Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids. Energy & Fuels. 28: 423-430.
  58. Hu Z., Azmi S. M., Raza G., Glover P. W., Wen D., (2016), Nanoparticle-assisted water-flooding in berea sandstones. Energy & fuels. 30: 2791-2804.
  59. Tarek M., (2015), Investigating nano-fluid mixture effects to enhance oil recovery. Presented at the SPE Annual Technical Conference and Exhibition held in Houston, Texas, USA, 28-30 September. Paper SPE 178739.
  60. Hamedi Shokrlu Y., Babadagli T., (2010), Effects of nano-sized metals on viscosity reduction of heavy oil/bitumen during thermal applications. Presented at the Canadian Unconventional Resources and International Petroleum Conference held in Calgary, Alberta, Canada, 19-21 October. Paper SPE 137540.
  61. Shokrlu Y. H., Babadagli T., (2011), Transportation and interaction of nano and micro size metal particles injected to improve thermal recovery of heavy oil. Presented at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, USA, 30 October- 2 November. Paper SPE 146661.
  62. Hamedi Shokrlu Y., Babadagli T., (2013), In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: A study on in-situ catalysis and catalyst transportation. SPE Reservoir Evaluation & Engineering. 16: 333-344.
  63. Shokrlu Y. H., Maham Y., Tan X., Babadagli T., Gray M., (2013), Enhancement of the efficiency of in situ combustion technique for heavy-oil recovery by application of nickel ions. Fuel. 105: 397-407.
  64. Hendraningrat L., Li S., Torsæter O., (2013), A core flood investigation of nanofluid enhanced oil recovery. J. Petrol. Sci. Eng. 111: 128-138.
  65. Wiesner M., Bottero J. Y., (2007), Environmental nanotechnology. New York, McGraw-Hill Professional Publishing.
  66. Nelson K. E., Ginn T. R., (2011), New collector efficiency equation for colloid filtration in both natural and engineered flow conditions. Water Res. Res. 47: 1-17.
  67. Kondiparty K., Nikolov A., Wu S., Wasan D., (2011), Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments. Langmuir. 27: 3324-3335.
  68. McElfresh P. M., Holcomb D. L., Ector D., (2012), Application of nanofluid technology to improve recovery in oil and gas wells. Presented at the SPE International Oilfield Nanotechnology Conference and Exhibition held in Noordwijk, The Netherlands, 12-14 June. Paper SPE 154827.
  69. Hendraningrat L., Li S., Torsater O., (2013), Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: an experimental investigation. Presented at the SPE Reservoir Characterization and Simulation Conference and Exhibition held in Abu Dhabi, UAE, 16-18 September. Paper SPE 165955.
  70. Hendraningrat L., (2015), Unlocking the Potential of Hydrophilic Nanoparticles as Novel Enhanced Oil Recovery Method: An Experimental Investigation. Publisher: NTNU, Series: Doctoral thesis at NTNU ; 2015 : 202.
  71. Caldelas F. M., Murphy M., Huh C., Bryant S. L., (2011), Factors governing distance of nanoparticle propagation in porous media. Presented at the SPE Production and Operations Symposium held in Oklahoma, USA, 27-29 March. Paper SPE 142305.
  72. Hendraningrat L., Torsæter O., (2015), Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems. Appl. Nanosc. 5: 181-199.
  73. Somasundaran P., Agar G. E., (1967), The zero point of charge of calcite. J. Colloid Interf. Sci. 24: 433-440.
  74. Worthen A. J., Tran V., Cornell K. A., Truskett T. M., Johnston K. P., (2016), Steric stabilization of nanoparticles with grafted low molecular weight ligands in highly concentrated brines including divalent ions. Soft Matter. 12: 2025-2039.
  75. Kanj M. Y., Funk J. J., Al-Yousif Z., (2009), Nanofluid core flood experiments in the ARAB-D. Presented at the SPE Saudi Arabia Section Technical Symposium and Exhibition held in Al-Khobar, Saudi Arabia, 9-11 May. Paper SPE 126161.
  76. Zhang T., Murphy M. J., Yu H., Bagaria H. G., Yoon K. Y., Nielson B. M., Bryant S. L., (2015), Investigation of nanoparticle adsorption during transport in porous media. SPE J. 20: 667-677.
  77. Sharma A. K., Tiwari A. K., Dixit A. R., (2016), Rheological behavior of nanofluids: A review. Renew. Sustain. Energy Rev. 53: 779-791.
  78. He Y., Jin Y., Chen H., Ding Y., Cang D., Lu H., (2007), Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 50: 2272-2281.
  79. Chen H., Ding Y., He Y., Tan C., (2007), Rheological behavior of ethylene glycol-based titania nanofluids. Chem. Phys. Lett. 444: 333-337.
  80. Chen H., Ding Y., Tan C., (2007), Rheological behavior of nanofluids. New J. Phys. 9: 367-371.
  81. Chen H., Yang W., He Y., Ding Y., Zhang L., Tan C., Bavykin D. V., (2008), Heat transfer and flow behavior of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 183: 63-72.
  82. Alphonse P., Bleta R., Soules R., (2009), Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. J. Colloid Interf. Sci. 337: 81-87.
  83. Chen H., Witharana S., Jin Y., Kim C., Ding Y., (2009), Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 7: 151-157.
  84. Penkavova V., Tihon J., Wein O., (2011), Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Res. Lett. 6: 273-277.
  85. Richmond W. R., Jones R. L., Fawell P. D., (1998), The relationship between particle aggregation and rheology in mixed silica-titania suspensions. Chem. Eng. J. 71: 67-75.
  86. Tseng W. J., Lin K. C., (2003), Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater. Sci. Eng: A. 355: 186-192.
  87. Turgut A., Tavman I., Chirtoc M., Schuchmann H. P., Sauter C., Tavman S., (2009), Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int. J. Thermophys. 30: 1213-1226.
  88. Pötschke P., Fornes T. D., Paul D. R., (2002), Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 43: 3247-3255.
  89. Yang Y., Grulke E. A., Zhang Z. G., Wu G., (2006), Thermal and rheological properties of carbon nanotube-in-oil dispersions. J. Appl. Phys. 99: 114307-1143011.
  90. Lu K., (2007), Rheological behavior of carbon nanotube-alumina nanoparticle dispersion systems. Powder Technol. 177: 154-161.
  91. Seyhan A. T., Gojny F. H., Tanoğlu M., Schulte K., (2007), Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Europ. Polym. J. 43: 2836-2847.
  92. Ko G. H., Heo K., Lee K., Kim D. S., Kim C., Sohn Y., Choi M., (2007), An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. Int. J. Heat Mass Transf. 50: 4749-4753.
  93. Yang Y., Grulke E. A., Zhang Z. G., Wu G., (2007), Temperature effects on the rheological properties of carbon nanotube-in-oil dispersions. Colloids and Surf A: Physicochem. Eng. Asp. 298: 216-224.
  94. Wang B., Wang X., Lou W., Hao J., (2010), Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes. The J. Phys. Chem. C. 114: 8749-8754.
  95. Phuoc T. X., Massoudi M., Chen R. H., (2011), Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int. J. Therm. Sci. 50: 12-18.
  96. Ruan B., Jacobi A. M., (2012), Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res. Lett. 7: 1-14.
  97. Wang J., Zhu J., Zhang X., Chen Y., (2013), Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Experim. Therm. Fluid Sci. 44: 716-721.
  98. Meng Z., Han D., Wu D., Zhu H., Li Q., (2012), Thermal conductivities, rheological behaviors and photo-thermal properties of ethylene glycol-based nanofluids containing carbon black nanoparticles. Transact. Mater. Res. Soc. Japan. 37: 111-114.
  99. Chevalier J., Tillement O., Ayela F., (2007), Rheological properties of nanofluids flowing through microchannels. Appl. Phys. Lett. 91: 233103-233107.
  100. Tavman I., Turgut A., Chirtoc M., Schuchmann H. P., Tavman S., (2008), Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles. Archiv. Mater. Sci. 34: 99-104.
  101. Chevalier J., Tillement O., Ayela F., (2009), Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates. Phys. Rev. E. 80: 051403-1-051403-7.
  102. Jung Y., Son Y. H., Lee J. K., Phuoc T. X., Soong Y., Chyu M. K., (2011), Rheological behavior of clay–nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids. ACS Appl. Mater. Interf. 3: 3515-3522.
  103. Mondragon R., Julia J. E., Barba A., Jarque J. C., (2012), Determination of the packing fraction of silica nanoparticles from the rheological and viscoelastic measurements of nanofluids. Chem. Eng. Sci. 80: 119-127.
  104. Anoop K., Sadr R., Al-Jubouri M., Amani M., (2014), Rheology of mineral oil- SiO2 nanofluids at high pressure and high temperatures. Int. J. Therm. Sci. 77: 108-115.
  105. Tseng W. J., Wu C. H., (2002), Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions. Acta Mater. 50: 3757-3766.
  106. Tseng W. J., Wu C. H., (2003), Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. Ceram. Int. 29: 821-828.
  107. Mehrali M., Sadeghinezhad E., Latibari S. T., Kazi S. N., Mehrali M., Zubir M. N. B. M., Metselaar H. S. C., (2014), Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanosc. Res. Lett. 9: 15-21.
  108. Cabaleiro D., Pastoriza-Gallego M. J., Gracia-Fernández C., Piñeiro M. M., Lugo L., (2013), Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanosc. Res. Lett. 8: 286-291.
  109. Moghaddam M. B., Goharshadi E. K., Entezari M. H., Nancarrow P., (2013), Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem. Eng. J. 231: 365-372.
  110. Duan F., Wong T. F., Crivoi A., (2012), Dynamic viscosity measurement in non-Newtonian graphite nanofluids. Nanosc. Res. Lett. 7: 360.
  111. Saeedinia M., Akhavan-Behabadi M. A., Razi P., (2012), Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. Int. Communic. Heat and Mass Transf. 39: 152-159.
  112. Meng Z., Wu D., Wang L., Zhu H., Li Q., (2012), Carbon nanotube glycol nanofluids: photo-thermal properties, thermal conductivities, and rheological behavior. Particuol. 10: 614-618.
  113. Aladag B., Halelfadl S., Doner N., Maré T., Duret S., Estellé P., (2012), Experimental investigations of the viscosity of nanofluids at low temperatures. Appl. Energy. 97: 876-880.
  114. Abareshi M., Sajjadi S. H., Zebarjad S. M., Goharshadi E. K., (2011), Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids. J. Molecul. Liq. 163: 27-32.
  115. Pastoriza-Gallego M. J., Lugo L., Legido J. L., Piñeiro M. M., (2011), Rheological non-Newtonian behavior of ethylene glycol-based Fe2O3 nanofluids. Nanosc. Res. Lett. 6: 560-565.
  116. Abdelhalim M. A. K., Mady M. M., Ghannam M. M., (2011), Rheological and dielectric properties of different gold nanoparticle sizes. Lipids Health Disease. 10: 1-10.
  117. Pastoriza-Gallego M. J., Lugo L., Legido J. L., Piñeiro M. M., (2011), Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanosc. Res. Lett. 6: 221-226.
  118. Zhu H., Li C., Wu D., Zhang C., Yin Y., (2010), Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci. China Technol. Sci. 53: 360-368.
  119. Tamjid E., Guenther B. H., (2010), Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol. Powder Technol. 197: 49-53.
  120. Naik M. T., Janardhana G. R., Reddy K. V. K., Reddy B. S., (2010), Experimental investigation into the rheological property of copper oxide nanoparticles suspended in propylene glycol–water-based fluids. ARPN J. Eng. Appl. Sci. 5: 29-34.
  121. Xie H., Yu W., Chen W., (2010), MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J. Exp. Nanosc. 5: 463-472.
  122. Yu W., Xie H., Chen L., Li Y., (2009), Investigation of thermal conductivity and viscosity of ethylene glycol-based ZnO nanofluid. Thermochim. Acta. 491: 92-96.
  123. Chen H., Ding Y., Lapkin A., (2009), Rheological behavior of nanofluids containing tube/rod-like nanoparticles. Powder Technol. 194: 132-141.
  124. Anoop K. B., Kabelac S., Sundararajan T., Das S. K., (2009), Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 106: 034909-034915.
  125. Chen H., Ding Y., Lapkin A., Fan X., (2009), Rheological behavior of ethylene glycol-titanate nanotube nanofluids. J. Nanopart. Res. 11: 1513-1517.
  126. Namburu P. K., Kulkarni D. P., Misra D., Das D. K., (2007), Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp. Therm. Fluid Sci. 32: 397-402.
  127. Hong R. Y., Pan T. T., Han Y. P., Li H. Z., Ding J., Han S., (2007), Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids. J. Mag. Mag. Mater. 310: 37-47.
  128. Tseng W. J., Chen C. N., (2006), Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41: 1213-1219.
  129. Prasher R., Song D., Wang J., Phelan P., (2006), Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89: 133108-133113.
  130. Tseng W. J., Tzeng F., (2006), Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids. Coll. Surf. A: Physicochem. Eng. Asp. 276: 34-39.
  131. Chang H., Jwo C. S., Lo C. H., Tsung T. T., Kao M. J., Lin H. M., (2005), Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci. 10: 128-132.
  132. Kwak K., Kim C., (2005), Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Austral. Rheol. J. 17: 35-40.
  133. Pötschke P., Fornes T. D., Paul D. R., (2002), Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 43: 3247-3255.
  134. Ju B., Fan T., Ma M., (2006), Enhanced oil recovery by flooding with hydrophilic nanoparticles. China Particuol. 4: 41-46.
  135. Khilar K. C., Fogler H. S., (1998), Migrations of fines in porous media. 1st ed., Kluwer Academic Publishers: Dordrecht, The Netherlands, pp, 1-111.
  136. Cheraghian G., (2015), Effects of nanoparticles on wettability: A review on applications of nanotechnology in the enhanced oil recovery. 443-452.
  137. Bera A., Mandal A., Kumar T., (2015), The effect of rock-crude oil-fluid interactions on wettability alteration of oil-wet sandstone in the presence of surfactants. Petrol. Sci. Technol. 33: 542-549.
  138. Donaldson E. C., Thomas R. D., Lorenz P. B., (1969), Wettability determination and its effect on recovery efficiency. Soc. Petrol. Eng. J. 9: 13-20.
  139. Lorenz P. B., Donaldson E. C., Thomas R. D., (1974), The Use of centrifugal measurements of wettability to predict Oil recovery. Vol. 7873, US Department of the Interior, Bureau of Mines, USA.
  140. Morrow N. R., (1990), Wettability and its effect on oil recovery. J. Petrol. Technol. 42: 1-476.
  141. Behzadi A., Mohammadi A., (2016), Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery. J. Nanopart. Res. 18: 266-272.
  142. Bera A., Belhaj H., (2016), Application of nanotechnology using nanoparticles and nano dispersions in oil recovery-A comprehensive review. J. Natural Gas Sci. Eng. 34: 1284-1309.
  143. Fazelabdolabadi B., Alizadeh-Mojarad A., (2017), A molecular dynamics investigation into the adsorption behavior inside {001} kaolinite and {1014} calcite nano-scale channels: the case with confined hydrocarbon liquid, acid gases, and water. Appl. Nanosc. 7: 155-165.
  144. Mohammed M., Babadagli T., (2015), Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Adv. Coll. Interf. Sci. 220: 54-77.
  145. Giraldo J., Benjumea P., Lopera S., Cortés F. B., Ruiz M. A., (2013), Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels. 27: 3659-3665.
  146. Maghzi A., Mohammadi S., Ghazanfari M. H., Kharrat R., Masihi M., (2012), Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Exp. Therm. Fluid Sci. 40: 168-176.
  147. Karimi A., Fakhroueian Z., Bahramian A., Pour Khiabani N., Darabad J. B., Azin, R., Arya S., (2012), Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy & Fuels. 26: 1028-1036.
  148. Roustaei A., Saffarzadeh S., Mohammadi M., (2013), An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs. Egyp. J. Petrol. 22: 427-433.
  149. Joonaki E., Ghanaatian S. J. P. S., (2014), The application of nanofluids for enhanced oil recovery: Effects on interfacial tension and core flooding process. Petrol. Sci. Technol. 32: 2599-2607.
  150. Hendraningrat L., Torsæter O., (2014), Understanding fluid-fluid and fluid-rock interactions in the presence of hydrophilic nanoparticles at various conditions. Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Adelaide, Australia, 14-16 October. Paper SPE 171407.
  151. Seid Mohammadi M., Moghadasi J., Naseri S., (2014), An experimental investigation of wettability alteration in carbonate reservoir using γ- Al2O3 nanoparticles. Iran. J. Oil & Gas Sci. Technol. 3: 18-26.
  152. Roustaei A., Bagherzadeh H., (2015), Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs. J. Petrol. Explor. Produc. Technol. 5: 27-33.
  153. Li S., Genys M., Wang K., Torsæter O., (2015), Experimental study of wettability alteration during the nanofluid enhanced oil recovery process and its effect on oil recovery. Presented at the SPE Reservoir Characterization and Simulation Conference and Exhibition held in Abu Dhabi, UAE, 14-16 September. Paper SPE 175610.
  154. Sulaiman W. R. W., Adala A. J., Junin R., Ismail I., Ismail A. R., Hamid M. A., Tuan Abdullah T. A., (2015), Effects of salinity on nanosilica applications in altering limestone rock wettability for enhanced oil recovery. Adv. Mater. Res. 1125: 200-204.
  155. Moradi B., Pourafshary P., Jalali F., Mohammadi M., Emadi M. A., (2015), Experimental study of water-based nanofluid alternating gas injection as a novel enhanced oil-recovery method in oil-wet carbonate reservoirs. J. Nat. Gas Sci. Eng. 27: 64-73.
  156. Nazari Moghaddam R., Bahramian A., Fakhroueian Z., Karimi A., Arya S., (2015), Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks. Energy & Fuels. 29: 2111-2119.
  157. Moustafa E. A., Noah A., Beshay K., Sultan L., Essam M., Nouh O., (2015), Investigating the effect of various nanomaterials on the wettability of sandstone reservoir. World J. Eng. Technol. 3: 116-126.
  158. Ershadi M., Alaei M., Rashidi A., Ramazani A., Khosravani S., (2015), Carbonate and sandstone reservoirs wettability improvement without using surfactants for chemical enhanced oil recovery (C-EOR). Fuel. 153: 408-415.
  159. Nwidee L. N., Al-Anssari S., Barifcani A., Sarmadivaleh M., Lebedev M., Iglauer S., (2017), Nanoparticles influence on the wetting behavior of fractured limestone formation. J. Petrol. Sci. Eng. 149: 782-788.
  160. Huibers B. M., Pales A. R., Bai L., Li C., Mu L., Ladner D., Darnault C. J., (2017), Wettability alteration of sandstones by silica nanoparticle dispersions in light and heavy crude oil. J. Nanopart. Res. 19: 1-18.
  161. Kamal M. S., Adewunmi A. A., Sultan A. S., Al-Hamad M. F., Mehmood U., (2017), Recent advances in nanoparticles enhanced oil recovery: rheology, interfacial tension, oil recovery, and wettability alteration. J. Nanomater. 1-15.
  162. Towler B. F., Lehr H. L., Austin S. W., Bowthorpe B., Feldman J. H., Forbis S. K., Firouzi M., (2017), Spontaneous imbibition experiments of enhanced oil recovery with surfactants and complex nano-fluids. J. Surfac. Deterg. 20: 367-377.
  163. Bai L., Li C., Korte C., Huibers B. M., Pales A. R., Liang W. Z., Darnault C. J., (2017), Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces. Appl. Nanosc. 7: 947-972.
  164. Metin C. O., Baran J. R., Nguyen Q. P., (2012), Adsorption of surface-functionalized silica nanoparticles onto mineral surfaces and decane/water interface. J. Nanop. Res. 14: 1246-1250.
  165. Li S., (2016), An Experimental Investigation of Enhanced Oil Recovery Mechanisms in Nanofluid Injection Process. Doctoral Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
  166. Rostami P., Mehraban M. F., Sharifi M., Dejam M., Ayatollahi S., (2019), Effect of water salinity on oil/brine interfacial behavior during low salinity waterflooding: A mechanistic study. Petroleum. 5: 367-374.
  167. Roustaei A., Moghadasi J., Bagherzadeh H., Shahrabadi A., (2012), An experimental investigation of polysilicon nanoparticles' recovery efficiencies through changes in interfacial tension and wettability alteration. Presented at the SPE International Oilfield Nanotechnology Conference and Exhibition held in Noordwijk, The Netherlands, 12-14 June. Paper SPE 156976.
  168. Lan Q., Yang F., Zhang S., Liu S., Xu J., Sun D., (2007), Synergistic effect of silica nanoparticle and cetyltrimethylammonium bromide on the stabilization of O/W emulsions. Colloids Surf. A: Physicochem. Eng. Asp. 302: 126-135.
  169. AfzaliTabar M., Alaei M., Khojasteh R. R., Motiee F., Rashidi A. M., (2017), Preference of multi-walled carbon nanotube (MWCNT) to single-walled carbon nanotube (SWCNT) and activated carbon for preparing silica nanohybrid Pickering emulsion for chemical enhanced oil recovery (C-EOR). J. Solid-State Chem. 245: 164-173.
  170. Ragab A. M. S., Hannora A. E., (2015), A Comparative investigation of nanoparticle effects for improved oil recovery–experimental work. Presented at the SPE Kuwait Oil and Gas Show and Conference held in Mishref, Kuwait, 11-14 October. Paper SPE 175395.
  171. Esmaeilzadeh P., Hosseinpour N., Bahramian A., Fakhroueian Z., Arya S., (2014), Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air–water and n-heptane–water interfaces. Fluid Phase Equil. 361: 289-295.
  172. Alomair O. A., Matar K. M., Alsaeed Y. H., (2014), Nanofluids application for heavy oil recovery. Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Adelaide, Australia, 14-16 October. Paper SPE 171539.
  173. Olayiwola S. O., Dejam M., (2019), Mathematical modelling of surface tension of nanoparticles in electrolyte solutions. Chem. Eng. Sci. 197: 345-356.
  174. Olayiwola S. O., Dejam M., (2019), A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel. 241: 1045-1057.
  175. Munshi A. M., Singh V. N., Kumar M., Singh J. P., (2008), Effect of nanoparticle size on sessile droplet contact angle. J. Appl. Phys. 103: 084315-084321.
  176. Suleimanov B. A., Ismailov F. S., Veliyev E. F., (2011), Nanofluid for enhanced oil recovery. J. Petrol. Sci. Eng. 78: 431-437.
  177. Lyons W. C., Plisga G. J., (2005), Standard handbook of petroleum and natural gas engineering. 2nd ed., Gulf Professional Publishing, Burlington, USA, pp. 1-1568.
  178. Thomas S., (2008), Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l'IFP. 63: 9-19.
  179. Sun X., Zhang Y., Chen G., Gai Z., (2017), Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies. 10: 345-351.
  180. Wang J., Dong M., (2009), Optimum effective viscosity of polymer solution for improving heavy oil recovery. J. Petrol. Sci. Eng. 67: 155-158.
  181. Sheng J. J., (2010), Modern chemical enhanced oil recovery: Theory and practice. 1st ed., Gulf Professional Publishing: Amsterdam, The Netherlands, pp. 1-648.
  182. Ramsden D. K., McKay K., (1986), Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I—Fenton's reagent. Polym. Degrad. Stability. 14: 217-229.
  183. Ramsden D. K., McKay K., (1986), The degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part II—Autoxidation of Fe2+Polym. Degrad. Stability. 15: 15-31.
  184. Abdallah W. A., Taylor S. D., (2007), Surface characterization of adsorbed asphaltene on a stainless-steel surface. Nuclear Inst. Methods in Phys. Res. Sec. B: Beam Interac. Mater. Atoms. 258: 213-217.
  185. Amin J. S., Nikooee E., Ayatollahi S., Alamdari A., (2010), Investigating wettability alteration due to asphaltene precipitation: Imprints in surface multifractal characteristics. Appl. Surf. Sci. 256: 6466-6472.
  186. Tarboush B. J. A., Husein M. M., (2012), Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. J. Colloid and Interf. Sci. 378: 64-69.
  187. Kazemzadeh Y., Eshraghi S. E., Kazemi K., Sourani S., Mehrabi M., Ahmadi Y., (2015), Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and its effect on heavy oil recovery. Indus. Eng. Chem. Res. 54: 233-239.
  188. Nassar N. N., Hassan A., Pereira-Almao P., (2012), Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. J. Therm. Anal. Calorimetry. 110: 1327-1332.
  189. Haindade Z. M. W., Bihani A. D., Javeri S. M., Jere C. B., (2012), Enhancing flow assurance using Co-Ni nanoparticles for dewaxing of production tubing. Presented at the SPE International Oilfield Nanotechnology Conference and Exhibition held in Noordwijk, The Netherlands, 12-14 June. Paper SPE 157119.
  190. Shamsi J. H., Miller C. A., Wong M. S., Tour J. M., Verduzco R., (2014), Polymer coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131: 40576-40580.
  191. Skauge T., Spildo K., Skauge A., (2010), Nano-sized particles for EOR. Presented at the SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 24–28 April. Paper SPE 129933.  
  192. Zamani A., Maini B., Pereira Almao P., (2012), Flow of nanodispersed catalyst particles through porous media: Effect of permeability and temperature. Canad. J. Chem. Eng. 90: 304-314.
  193. Dharanivasan G., Rajamuthuramalingam T., Jesse D. M. I., Rajendiran N., Kathiravan K., (2015), Gold nanoparticles assisted characterization of amine-functionalized polystyrene multiwell plate and glass slide surfaces. Appl. Nanosc. 5: 39-50.
  194. Aziz H., Tunio S. Q., (2019), Enhancing oil recovery using nanoparticles: A review. Adv. Nat. Sci. Nanosc. Nanotechnol. 10: 033001-033007.
  195. Bergeron V., (1999), Forces and structure in thin liquid soap films. J. Phys: Condens. Matter. 11: R215-R220.
  196. Engeset B., (2012), The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes: A literature review and an experimental study. Master's Thesis, Norwegian University of Science and Technology, Trondheim, Norway, May.
  197. Derjaguin B. V., Churaev N. V., (1974), Structural component of disjoining pressure. J. Colloid Interf. Sci. 49: 249-255.
  198. Basu S., Sharma M. M., (1996), Measurement of critical disjoining pressure for dewetting of solid surfaces. J. Coll. Interf. Sci. 181: 443-455.
  199. Bila A., Stensen J. Å., Torsæter O., (2019), Experimental investigation of polymer-coated silica nanoparticles for enhanced oil recovery. Nanomaterials. 9: 822-826.
  200. Wasan D., Nikolov A., Kondiparty K., (2011), The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Current Opin. Coll. Interf. Sci. 16: 344-349.
  201. Aveyard R., Binks B. P., Clint J. H., (2003), Emulsions stabilized solely by colloidal particles. Adv. Coll. Interf. Sci. 100: 503-546.
  202. Wasan D. T., Nikolov A. D., (2003), Spreading of nanofluids on solids. Nature. 423: 156-159.
  203. Amirian E., Dejam M., Chen Z., (2018), Performance forecasting for polymer flooding in heavy oil reservoirs. Fuel. 216: 83-100.
  204. Piech M., Walz J. Y., (2002), Direct measurement of depletion and structural forces in polydisperse, charged systems. J. Coll. Interf. Sci. 253: 117-129.
  205. Jafarnezhad M., Giri M. S., Alizadeh M., (2017), Impact of SnO2 nanoparticles on enhanced oil recovery from carbonate media. Energy Sourc. Part A: Recov. Utiliz. Env. Effects. 39: 121-128.
  206. Ahmadi M. A., Ahmad Z., Phung L. T. K., Kashiwao T., Bahadori A., (2016), Experimental investigation the effect of nanoparticles on micellization behavior of a surfactant: Application to EOR. Petrol. Sci. Technol. 34: 1055-1061.
  207. Al-Anssari S., Barifcani A., Wang S., Maxim L., Iglauer S., (2016), Wettability alteration of oil-wet carbonate by silica nanofluid. J. Coll. Interf. Sci. 461: 435-442.
  208. Alnarabiji M. S., Yahya N., Shafie A., Solemani H., Chandran K., Abd Hamid S. B., Azizi K., (2016), The influence of hydrophobic multiwall carbon nanotubes concentration on enhanced oil recovery. Proced. Eng. 148: 1137-1140.
  209. Cheraghian G., Hendraningrat L., (2016), A review on applications of nanotechnology in the enhanced oil recovery part A: Effects of nanoparticles on interfacial tension. Int. Nano Lett. 6: 129-138.
  210. Cheraghian G., (2016), Effects of titanium dioxide nanoparticles on the efficiency of surfactant flooding of heavy oil in a glass micromodel. Petrol. Sci. Technol. 34: 260-267.
  211. Gharibshahi R., Jafari A., Haghtalab A., Karambeigi M. S., (2015), Application of CFD to evaluate the pore morphology effect on nanofluid flooding for enhanced oil recovery. RSC Adv. 5: 28938-28949.
  212. El-Diasty A. I., (2015), The potential of nanoparticles to improve oil recovery in bahariya formation, Egypt: An experimental study. Presented at the SPE Asia Pacific Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 11-13 August. Paper SPE 174599.
  213. Ragab A. M. S., Hannora A. E., (2015), An experimental investigation of silica nanoparticles for enhanced oil recovery applications. Presented at the SPE North Africa Technical Conference and Exhibition held in Cairo, Egypt, 14-16 September. Paper SPE 175829.
  214. Mohajeri M., Hemmati M., Shekarabi A. S., (2015), An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel. J. Petrol. Sci. Eng. 126: 162-173.
  215. Sharma T., Kumar G. S., Sangwai J. S., (2015), Comparative effectiveness of production performance of Pickering emulsion stabilized by nanoparticle–surfactant–polymer over surfactant–polymer (SP) flooding for enhanced oil recovery for Brownfield reservoir. J. Petrol. Sci. Eng. 129: 221-232.
  216. Jafari S., Khezrnejad A., Shahrokhi O., Ghazanfari M. H., Vossoughi M., (2015), Experimental investigation of heavy oil recovery by continuous/WAG injection of CO2 saturated with silica nanoparticles. Int. J. Oil Gas Coal Technol. 9: 169-179.
  217. Mohebbifar M., Ghazanfari M. H., Vossoughi M., (2015), Experimental investigation of nano-bio material applications for heavy oil recovery in shaly porous models: A pore-level study. J. Energy Res. Technol. 137: 014501-014506.
  218. Tarek M., El-Banbi A. H., (2015), Comprehensive investigation of effects of nano-fluid mixtures to enhance oil recovery. Presented at the SPE North Africa Technical Conference and Exhibition held in Cairo, Egypt, 14-16 September. Paper SPE 175835.
  219. Ehtesabi H., Ahadian M. M., Taghikhani V., (2015), Enhanced heavy oil recovery using TiO2 nanoparticles: Investigation of deposition during transport in core plug. Energy & Fuels. 29: 1-8.
  220. Sun Q., Li Z., Li S., Jiang L., Wang J., Wang P., (2014), Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles. Energy & Fuels. 28: 2384-2394.
  221. Sharma T., Suresh Kumar G., Sangwai J. S., (2014), Enhanced oil recovery using oil-in-water (o/w) emulsion stabilized by nanoparticle, surfactant, and polymer in the presence of NaCl. Geosys. Eng. 17: 195-205.
  222. Esfandyari Bayat A., Junin R., Samsuri A., Piroozian A., Hokmabadi M., (2014), Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy & fuels. 28: 6255-6266.
  223. Hamedi-Shokrlu Y., Babadagli T., (2014), Stabilization of nanometal catalysts and their interaction with oleic phase in porous media during enhanced oil recovery. Indus. Eng. Chem. Res. 53: 8464-8475.
  224. Nguyen P., Fadaei H., Sinton D., (2014), Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery. Energy & Fuels. 28: 6221-6227.
  225. Hendraningrat L., Torsaeter O., (2014), Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery. Presented at the Offshore Technology Conference-Asia held in Kuala Lumpur, Malaysia, 25-28 March. Paper OTC 24696.
  226. Khezrnejad A., James L. A., Johansen T. E., (2014), Water enhancement using nanoparticles in water alternating gas (WAG) micromodel experiments. Presented at the SPE Annual Technical Conference and Exhibition held in Amsterdam, The Netherlands, 27-29 October. Paper SPE 173484.
  227. Mo D., Jia B., Yu J., Liu N., Lee R., (2014), Study nanoparticle-stabilized CO2 foam for oil recovery at different pressure, temperature, and rock samples. Presented at the SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 12-16 April. Paper SPE 169110.
  228. Maghzi A., Kharrat R., Mohebbi A., Ghazanfari M. H., (2014), The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel. 123: 123-132.
  229. Hendraningrat L., Li S., Torsaeter O., (2013), Enhancing oil recovery of low-permeability Berea sandstone through optimized nanofluids concentration. Presented at the SPE Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 2-4 July. Paper SPE 165283.
  230. Maghzi A., Mohebbi A., Kharrat R., Ghazanfari M. H., (2013), An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery. Petrol. Sci. Technol. 31: 500-508.
  231. Li S., Hendraningrat L., Torsaeter O., (2013), Improved oil recovery by hydrophilic silica nanoparticles suspension: 2 phase flow experimental studies. Presented at the International Petroleum Technology Conference held in Beijing, China, 26-28 March. Paper SPE 16707.
  232. Shahrabadi A., Bagherzadeh H., Roostaie A., Golghanddashti H., (2012), Experimental investigation of HLP nanofluid potential to enhance oil recovery: A mechanistic approach. Presented at the SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12-14 June. Paper SPE 156642.
  233. Aminzadeh-Goharrizi B., DiCarlo D. A., Chung D. H., Kianinejad A., Bryant S. L., Huh C., (2012), Effect of nanoparticles on flow alteration during CO2 injection. Presented at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, USA, 8-10 October. Paper SPE 160052.
  234. Hendraningrat L., Shidong L., Torsaeter O., (2012), A glass micromodel experimental study of hydrophilic nanoparticles retention for EOR project. Presented at the SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition held in Moscow, Russia, 16-18 October. Paper SPE 159161.
  235. Ogolo N. A., Olafuyi O. A., Onyekonwu M. O., (2012), Enhanced oil recovery using nanoparticles. Presented at the SPE Saudi Arabia Section Technical Symposium and Exhibition held in Al-Khobar, Saudi-Arabia, 8-11 April. Paper SPE 160847.
  236. Torsater O., Engeset B., Hendraningrat L., Suwarno S., (2012), Improved oil recovery by nanofluids flooding: an experimental study. Presented at the SPE Kuwait International Petroleum Conference and Exhibition held in Kuwait City, Kuwait, 10-12 December. Paper SPE 163335.
  237. Haroun M. R., Alhassan S., Ansari A. A., Al Kindy N. A. M., Abou Sayed N., Abdul Kareem B. A., Sarma H. K., (2012), Smart nano-EOR process for Abu Dhabi carbonate reservoirs. Presented at the Abu Dhabi International Petroleum Exhibition and Conference held in Abu Dhabi, UAE, 11-14 November. Paper SPE 162386.
  238. Maghzi A., Mohebbi A., Kharrat R., Ghazanfari M. H., (2011), Pore-scale monitoring of wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodel. Transp. Por. Med. 87: 653-664.
  239. Onyekonwu M. O., Ogolo N. A., (2010), Investigating the use of nanoparticles in enhancing oil recovery. Presented at the 34th Annual SPE International Conference and Exhibition held in Tinapa, Calabar, Nigeria, 31 July-3 August. Paper SPE 140744.
  240. Rodriguez Pin E., Roberts M., Yu H., Huh C., Bryant S. L., (2009), Enhanced migration of surface-treated nanoparticles in sedimentary rocks. Presented at the SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 4-7 October. Paper SPE 124418.
  241. Gaafar G. R., Tewari R. D., Zain Z. M., (2015), Overview of advancement in core analysis and its importance in reservoir characterization for maximizing recovery. Presented at the SPE Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 11-13 August. Paper SPE 174583.
  242. Espinosa D. R., (2011), Nanoparticle-stabilized supercritical CO foams for potential mobility control applications. Doctoral dissertation. The University of Texas at Austin, Austin, Texas, USA.
  243. Metin C., Bonnecaze R., Nguyen Q., (2013), The viscosity of silica nanoparticle dispersions in permeable media. SPE Res. Eval. Eng. 16: 327-332.
  244. Zaid H. M., Ahmad Latiff N. R., Yahya N., (2014), The effect of zinc oxide and aluminum oxide nanoparticles on interfacial tension and viscosity of nanofluids for enhanced oil recovery. Adv. Mater. Res. 1024: 56-59.
  245. Jafari S., Khezrnejad A., Shahrokhi O., Ghazanfari M. H., Vossoughi M., (2015), Experimental investigation of heavy oil recovery by continuous/WAG injection of CO2 saturated with silica nanoparticles. Int. J. Oil, Gas Coal Technol. 9: 169-179.
  246. Jafarnezhad M., Giri M. S., Alizadeh M., (2017), Impact of SnO2 nanoparticles on enhanced oil recovery from carbonate media. Energ. Sourc. Part A: Rec. Utilizat. Environ. Effects. 39: 121-128.