Green synthesis, characterization and antimicrobial activity of nanosized Cuprous Oxide fabricated using aqueous extracts of Allium cepa and Raphanus sativus

Document Type : Reasearch Paper

Authors

Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu-515003, Andhra Pradesh, India.

Abstract

Green synthesis of metal nanoparticles (MNPs) is attracting the attention of chemists as it is cost effective and environment benign technique.  Hence it is preferred to methods which use toxic reagents in the synthesis of MNPs. In. In this study, copper oxide nanoparticles (Cu2ONPs) were synthesized using Allium cepa (AC) and Raphanus sativus (RS) aqueous extracts.  The Cu2ONPs were investigated using UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). Peak positions (2θ values) in the XRD pattern of Cu2O NPs revealed (1 1 0), (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes of face-centered cubic (FCC) crystalline structure. The SEM images indicate spherical shape of Cu2ONPs having low particle size (12-30 nm). The present nanoparticles demonstrated substantial antimicrobial activity against harmful bacteria viz. S. aureus, and E. coli and also against C. albicans fungal species. The current study reveals efficacy of Allium cepa (Onion) and Raphanus sativus (Radish) aqueous extracts as reducing and capping agent for the green synthesis of Cu2O NPs. The copper nanoparticles derived from Raphanus sativus (RS) showed justifiably low grain size and comparable to recently studied copper nanoparticles prepared using plant extracts.

Keywords


[1] Schmid G., (1992), Large clusters and colloid metals in the embryonic state. Chem. Rev. 92: 1709-1727.
[2] Ramgir N., Datta N., (2013), Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. Physiocochem. Eng. Asp. 439: 101-106.
[3] Nasser N. N., Husein M. M., (2007), Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions. J. Colloid Interf. Sci. 316: 442-450.
[4] Kao M. J., Lo C. H., (2007), Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle       synthesis system. J. Alloy Compd. 434: 672-674.
[5] Chiang C. Y., Aroh K., (2012), Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting e part 1. CuO nanoparticle preparation. Int. J. Hydrogen Energy. 37: 4871-4879.
[6] Vijayakumar R., Elgamiel R., (2001), Sonochemical preparation and characterization of nanocrystal-line copper oxide embedded in ploy (polyvinyl) and its effect on crystal growth of copper oxide. Langmuir. 17: 1406-1410.
[7] Zhang Y., Wang S., (2006), CuO shuttle like nanocrystals synthesized by oriented attachment. J. Cryst. Growth. 291: 196-201.
[8] Wang J., Yang J., (2004), Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods. Mater. Des. 25: 625-629.
[9] Podstawczyk  A., Pawłowska  A., Bastrzyk  M., Czeryba J., Oszmiański J., (2019), Reactivity of (+)-Catechin with Copper(II) Ions: The green synthesis of size-controlled sub-10 nm copper nanoparticles. ACS Sustain. Chem. Eng. 7: 17535-17543.
[10] Cheirmadurai K., Biswas S., Murali R., Thanikaivelan P., (2014), Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 4: 19507-19511.
[11] Molnár Z., Bódai V., Szakacs G., Erdélyi B., Fogarassy Z., Sáfrán G., Varga T.,  Kónya Z., Tóth- Szeles E., Szűcs R., Lagzi I., (2018), Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 39: 43-48.
[12] Ghosh M. K., Jain K., Khan S., Das K., Ghorai, T. K., (2020), Green synthesis of copper nanoparticles from an extract of jatropha curcas leave: characterization, optical properties, CT-DNA binding and photoatalytic activity. ACS Omega. 5: 4973-4981.
[13] Nazar N., Bibi I., Kamal S., Iqbal M., Nouren S., Jilani K., Umair M., Ata S., (2018), Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. Int. J. Biol. Macromol. 106: 1203-1210.
[14] Vasantharaj S., Sathiyavimal S., Saravanan M., Senthilkumar P., Gnanasekaran K., Shanmugavel M., Manikandan E., Pugazhendhi A., (2019), Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B. 191: 143-149.
[15] Zhao L., Hu Q., Huang Y., Fulton A. N., Hannah-Bick A. N., Adeleye A. S., Keller A. A., (2017), Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH)2 nanopesticide. Sci: Nano. 4: 1750-1760.
[16] Ingle A. P., Duran N., Rai M., (2014), Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 98: 1001-1009.
[17] Duman F., Ocsoy I., Kup F. O., (2016), Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C. 60: 333-338.
[18] Dayakar T., Rao K. V., Bikshalu K., Rajendar V., Park S. H., (2017), Novel synthesis and structural analysis of Zinc oxide nanoparticles for the non enzymatic glucose biosensor. J. Mater. Sci: Mater. Med. 75: 1472-1479.
[19] Lee H. J., Song J. Y., Kim B. S., (2013), Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J. Chem. Technol. Biotechnol. 88: 1971-1977.
[20]  Yallappa S., Manjanna J., Sindhe M. A., Satyanarayan N. D., Pramod S. N., Nagaraja K., (2013), Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol. Biomol. Spectrosc. 110: 108-115.
[21] Ramyadevi J., Jeyasubramanian K., Marikani A., Rajakumar G., Rahuman A. A., Santhoshkumar T., Kirthi A. V., Jayaseelan C., Marimuthu S., (2011), Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol. Res. 109: 1403-1415.
[22] Abboud Y., Saffaj T., Chagraoui A., El Bouari A., Brouzi K., Tanane O., Ihssane B., (2014), Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 4: 571-576.
[23] Sivaraj R., Rahman P. K., Rajiv P., Salam H. A., Venckatesh R., (2014), Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta. Part A. 133: 178-181.
[24]  Chauhan N., Tyagi A. K., Kumar P., Malik A., (2016), Antimicrobial potential of Jatropha curcas synthesized silver nanoparticles against Food born pathogens. Front. Microbiol. 7: 1748-1753.
[25] Chandraker S. K., Lal M., Shukla R., (2019), DNA-binding, antioxidant, H2O2 sensing and photocatalytic properties of biogenic silver nanoparticles using Ageratum conyzoides L. leaf extract. RSC Adv. 9: 23408-23417.
[26]  Sadeghi B., Mohammadzadeh M., Babakhani B., (2015), Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extract: characterization and their stability. J. Phytochem. Photobiol. B: Biology. 148: 101-106.
[27]  Sadeghi B., Gholamhoseinpour F., (2015), A Study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A: Molec. Biomolec. Spectros. 134: 310-315.
[28]  Sadeghi B, Rostami A., Momeni S. S., (2015), Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta Part A: Molec. Biomolec. Spectros. 134: 326-332.
[29] Senthilkumar N., Nandhakumar E., Priya P., Soni D., Vimalan M., Potheher I. V., (2017), Synthesis of ZnO  nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activites. New J. Chem. 41: 10347-10356.
[30] Ganapathy M., Senthilkumar N., Vimalan M., Jeysekaran R. Potheher I. V., (2018), Studies on optical and electrical properties of green synthesized TiO2@Ag core-shell nanocomposite material. Mater. Res. Express. 5: 045020-045025.
[31]  Jayapriya M., Dhanasekaran D., Arulmozhi M., Nandhakumar E., Senthilkumar N. Sureshkumar K., (2019), Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: Antibacterial and catalytic activity. Res.Chem. Intermed. 45: 3617-3631.
[32]  Nandhakumar E., Priya P., Selvakumar  P., Vaishnavi E., Sasikumar A., Senthilkumar N., (2019), One step hydrothermal green approach of CuO/Ag nanocomposites: Analysis of structural, biological activites. Mater. Res. Express. 6: 095036-095042.
[33] Nandhakumar E., Priya P., Rajeswari R., Aravindhan V., Sasikumar A., Senthilkumar N., (2019), Studies on structural, optical and thermal properties of Fe3O4 (NR)/ZrO2 CSNCs synthesized via green approach for photodegradation of dyes. Res. Chem. Intermed. 45: 2657-2671.
[34] Senthilkumar N., Aravindhan V., Ruckmani K., Potheher I. V., (2018), Coriandum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics. Mater. Res. Express. 5: 055032-055038.
[35] Balraj B., Senthilkumar N., Potheher I. V., Arulmozhi M., (2018), Characterization, antibacterial, anti-arthritic and in-vitro cytotoxic potentials of biosynthesized magnesium oxide nanomaterial. Mater. Sci. Eng. B. 231: 121-127.
[36] Sadeghi B., Jamali M., Kia Sh., Amini Nia A., Ghafari S., (2010), Synthesis and characterization of silver nanoparticles for antibacterial activity. Int. J. Nano Dimens. 1: 119-124.
[37] Mie G., (1908), Contributions to the optics of cloudy media, especially colloidal metal solutions. Ann. Phys. 330: 377-445.
[38] Stohs S. J., Bagchi D., (1995), Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321-336.
[39] Haung N. M., Lim H. N., Radiman S., Khiew P. S., Chiu W. S., Hasim R., Chia C. H., (2010), Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties. Colloids Surf. A. Physiochem. Eng. Asp. 353: 69-76.
[40] Azam A., Ahmed A. S., Oves M., Khan M. S., Memic A., (2012), Size dependent antimicrobial properties of CuO nanoparticles against Gram-positive and –negative bacterial strains. Int. J. Nanomed. 7: 3527-3535.
[41] Lin Y. E., Vidic R. D., Stout J. E., Mccartney C. A., Yu V. L., (1998), Inactivation of Mycobacterium avium by copper and silver ions. Water Res. 32: 1997–2000.
[42] Nawaz M., Han M. Y., Kim T., Manzoor U., Amin M. T., (2012), Silver disinfection of Pseudomonas aeruginosa and E. Coli in rooftop harvested rainwater for potable purposes. Sci. Total Environ. 431: 20–25.
[43] Hoshino N., Kimura T., Yamaji A., Ando T., (1999), Damage to cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radical Biol. Med. 27: 1245-1250
[44] Worku W. A., Fedlu K. S., Endale T. M., Hadgu H. B., Bedasa A. G., (2020), Synthesis of copper oxide nanoparticles using plant extract of catha edulis and Its antibacteial activity. J. Nanotechnol. 2020: Article ID 2932434.
[45] Rayapa R. K., (2017), Green synthesis, morphological and optical studies of CuO nanoparticles. J. Molec. Struct. 1150: 553-557.
[46] Rakesh C., Aslam K., Md Harunar R., (2020), Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Adv. 10: 14374-14378.
[47] Saranya S., Agneeswaran R., Deepa P. N., (2020), Green-synthesized rice-shaped copper oxide nanoparticle using caesalpinia bonducella seed extract and their applications. ACS Omega. 5: 1040-1051.
[48] Fozia A., Baharullah K., Amal A., Muhammad Q., Ijaz A, Riaz U, Mohammed B., Anadil G., Saira Z., Rizwan A., (2021), Green synthesis of copper oxide nanoparticles using aerva javanica leaf extract and their characterization and investigation of In vitro antimicrobial potential and cytotoxic activities. Evidence-Based Complem. Aoternat. Medic. 2021: Article ID 5589703.
[49] Meldas A., Azade A., Fatih E, Corina M. C., Ibrahim I., (2017), Green synthesis of copper oxide nanoparticles using ocimum basilicum extract and their antibacterial activity. Fresen. Environm. Bulletin. 16: 7832-7838.
[50] Anjali Krishna B., Naresh Kumar P., Prema P., (2020), Green synthesis of copper oxide nanoparticles using cinnamomum malabatrum leaf extact and its antibacterial activity. Ind. J. Chem. Technol. 27: 525-530.
[51] Akansha T. Z., Poonam P., Narvi S. S., (2016),  Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity. Int. J.  Sci. Eng. Technol. 4: 463-472.
[52] Mittal A. K., Chisti Y., Banerjee U. C., (2013), Synthesis of metallic nanoparaticles using plant extracts. Biotechnol. Adv. 31: 346-356.
[53]  Kiranmai M., Kadimcharla K., Keesara N. R., Fatima S. N., Bommena P., Batchu U. R., (2017), Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Ind. J. Pharm. Sci. 79: 695-700.
[54]  Tshirelesto P., Ateba C. N., Fayemi O. E., (2021), Spectroscopic and antibacterial properties of CuONPs from orange, lemon and tangerine peel extracts: Potential for combating bacterial resistance. Molecules. 26: 586-592.
[55]  Manju G., Geeta J. N. P., (2018), Synthesis and catalytic and biological activities of silver and copper nanoparticles using Cassia occidentalis. Int. J. Biomater. 2018: Article ID 6735426.
[56]  Ali K., Saquib Q., Ahmed B., Siddiqui M. A., Ahmad J., Al-Shaeri M., Al-khedhairy A. A., Musarrat J., (2020), Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against aspergillus flaus: An in vitro approach. Process. Biochem. 91: 387-397.
[57]  Tahvilian R., Zangeneh M. M., Falahi H., Sadrjavadi K., Jalalvand A. R., Zangeneh A., (2019), Green synthesis and chemical characterization of copper nanoparaticles using Allium saralicum leaves and ssessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties. Appl. Organomet. Chem. 33: e5234.
[58] Narayanan K. B., Sakthivel N., (2011), Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour. Bull. Mater. Sci. 46: 1708-1713.
[59]  Sukumar K., Arumugam S., Thangaswamy S., Balakrishnan S., Chinnappan S., Kandasamy S., (2020), Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance. Optik – Int. J. Light and Electron Opt. 202: 163507-163511.
[60]  Velsankar K., Kumar R. M. A., Preethi R., Muthulakshmi V., Sudhahar S., (2020), Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J. Environ. Chem. Eng. 2020: 8-13.
[61]  Dey A., Manna S., Chattopadhyay S., Mondal D., Chattopadhyay D., Raj A., Das S., Bag B. G., Roy S., (2019), Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles include apoptiosis through activation of TNF-alpha and caspases signaling pathway against cancer cells. J. Saudi Chem. Soc. 23: 222-238.
[62] Zhao H. W., Su H. T., Ahmeda A., Sun Y. Q., Li Z. Y., (2020), Biosynthesis of  copper nanoparticles using Allium eriophyllum Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound-healing potentials. Appl. Organomet. Chem. http://doi.org/10.1002/aoc.5587.
[63]  Dinesh S., Karthikeyan S., Arumugam P., (2012), Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch. Appl. Sci. Res. 4: 178-187.
[64]  Sulaiman G. M., Mohammed W. H., Marzoog T. R., Al-Amiery A. A. A., Kadhum A. A. H., Mohamad A. B., (2013), Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 3: 58-63.
[65]  Ganesan R. M., Prabu H. G., (2015), Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab. J. Chem. 12: 2166-2174.
[66]  Jayaseelan C., Rahuman A. A., Rajakumar G., Kirthi A. V., Santhoshkumar T., Marimuthu S., Elang g., (2011), Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant. Tinospora cordifolia Miers. Parasitol Res. 109: 185-194.
[67]  Dipankar C., Murugan S., (2012), The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B. 98: 122-119.
[68]  Naika H. R., Lingaraju K., Manjunath K., Kumar D., Nagaraju G., Suresh D., Nagabhushana H., (2015), Green synthesis of CuO nanoparticles using Gloriosa superb L. extract and their antibacterial activity. J. Taibah Univ. Sci. 9: 7-12.
[69]  Rehana D., Mahendiran D., Kumar R. S., Rahiman A. K., (2017), Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother. 8: 1067-1077.