2 Nwadiugwu W. P., Kim D. S., (2022), Reconfigurable physical resource block using novel-beamforming filter circuit for LTE-Based cell-edge terminals. IEEE Transact. Computer-Aided Design of Integ. Circuits and Systems 41: 5131-5135.
https://doi.org/10.1109/TCAD.2022.3146847
3 Gupta P., Jana S. K., (2022), Design of a configurable third-order G m-C filter using QFG and BD-QFG MOS-based OTA for fast locking speed PLL. J. Circuits, Systems and Computers. 2350040.
https://doi.org/10.1142/S0218126623500408
4 Ryynanen J., Hotti M., Saari V., Jussila J., Malinen A., Sumanen L., Halonen K. A., (2006), WCDMA multicarrier receiver for base-station applications. IEEE J. Solid-State Circuits. 41: 1542-1550.
https://doi.org/10.1109/JSSC.2006.873924
5 Saari, V, (2006), A 10 MHz channel-select filter for WCDMA multicarrier base-station applications, in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Island of Kos, Greece, 055- 1058.
7 Kaltiokallio M., Saari V., Rapinoja T., Stadius K., Ryynanen J., Lindfors S., Halonen K., (2008), A WiMedia UWB receiver with a synthesizer. In IEEE ESSCIRC-34th Europ. Solid-State Circuits Conf. 330-333.
https://doi.org/10.1109/ESSCIRC.2008.4681859
8 Giannini V., Craninckx J., D'amico S., Baschirotto A., (2007), Flexible baseband analog circuits for software-defined radio front-ends. IEEE J. Solid-State Circuits. 42: 1501-1512.
https://doi.org/10.1109/JSSC.2007.899103
9 Kitsunezuka M., Hori S., Maeda T., (2009), A widely-tunable, reconfigurable CMOS analog baseband IC for software-defined radio. IEEE J. Solid-State Circuits. 44: 2496-2502.
https://doi.org/10.1109/JSSC.2009.2023275
10 Wang Y., Ye L., Liao H., Huang R., Wang Y., (2014), Highly reconfigurable analog baseband for multistandard wireless receivers in 65-nm CMOS. IEEE Transact. Circuits and Systems II: Express Briefs. 62: 296-300.
https://doi.org/10.1109/TCSII.2014.2368975
11 Lo T. Y., Hung C. C., Ismail M., (2009), A wide tuning range G $ _ {\rm m} $-C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE J. Solid-State Circuit. 44: 2515-2524.
https://doi.org/10.1109/JSSC.2009.2023154
12 Li J., Parlak M., Mukai H., Matsuo M., Buckwalter J. F., (2014), A reconfigurable 50-Mb/s-1 Gb/s pulse compression radar signal processor with offset calibration in 90-nm CMOS. IEEE Transact. Microwave Theory and Techniq. 63: 266-278.
https://doi.org/10.1109/TMTT.2014.2375177
13 Kitsunezuka M., Tokairin T., Maeda T., Fukaishi M., (2011), A low-IF/zero-IF reconfigurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE J. Solid-State Circuit. 46: 572-582.
https://doi.org/10.1109/JSSC.2010.2102510
14 Liu H., Zhu X., Lu M., Yeo K. S., (2019), Design of a voltage-controlled programmable-gain amplifier in 65-nm CMOS technology. IEEE MTT-S Int. Microwave Symp. (IMS). 87-90.
https://doi.org/10.1109/MWSYM.2019.8700865
15 Solaymanpour A., Reyhani S., (2022), Design of tunable low-power band-stop filter for elimination of 50 Hz power-line noise. J. Applied Res. Elect. Eng. 1: 198-202.
17 Acosta L., Jiménez M., Carvajal R. G., Lopez-Martin A. J., Ramirez-Angulo J., (2009), Highly linear tunable CMOS Gm-C lowpass filter. IEEE Transact. Circuits and Systems I: Regular Papers. 56: 2145-2158.
https://doi.org/10.1109/TCSI.2008.2012218
18 Thanachayanont A., Payne A., (2000), CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proceed.-Circuits, Devices and Systems. 147: 42-48.
https://doi.org/10.1049/ip-cds:20000053
19 Van Valkenburg M. E., Shaumann R., (2001), Design of analog filters. Oxford University Press, Oxford, UK.
20 Verma R. K., Yadava R. L., Balodi D., (2022), An insect-feed on-chip frequency reconfigurable patch antenna design with high tuning efficiency and compatible radome structure for broadband wireless applications. Scientia Iranica. 29: 3304-3316.
21 Khan I. U., Balodi D., Misra N. K., (2022), Low power LC-quadrature VCO with superior phase noise performance in 0.13 µm RF-CMOS process for modern WLAN application. Circuits, Systems, and Signal Processing. 41: 2522-2540.
https://doi.org/10.1007/s00034-021-01921-4
22 Khan Z. H., Kumar S., Balodi D., (2023), A Low leakage down-conversion K-Band MIXER using current-reuse double-balanced architecture in 130-nm CMOS process for modern RF applications. Int. J. Comput. Digital Systems. 13: 17-25.
https://doi.org/10.12785/ijcds/130102
23 Toumazou C., Moschytz G. S., Gilbert B., (Eds.), (2004), Trade-offs in analog circuit design: the designer's companion. Springer Science & Business Media.
24 Nauta B., (1991), Analog CMOS filters for very high frequencies. Ph.D. Thesis, Twente Universiteit, Enschede, The Netherlands.
25 Gee W.A., (2005), CMOS integrated LC Q-enhanced RF filters for wireless receivers. Ph.D. Thesis, ECE, GATECH, Atlanta, GA, USA.
26 Nauta B. A., (1992), CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits. 2: 142-153.
https://doi.org/10.1109/4.127337
27 Balodi D., Verma A., Paravastu A. G., (2020), Low power LC-voltage controlled oscillator with− 140 dBc/Hz@ 1 MHz offset using on-chip inductor design in 0.13 µm RF-CMOS process for S-Band application. Circuit World. 46: 32-41.
https://doi.org/10.1108/CW-03-2019-0023
28 Balodi D., Verma A., Paravastu A. G., (2020), Ultra-wideband quadrature LC-VCO using capacitor-bank and backgate topology with on-chip spirally stacked inductor in 0.13 μm RF-CMOS process covering S-C bands. Microelectronics J. 99: 104727.
https://doi.org/10.1016/j.mejo.2020.104727
29 Liu H., Zhu X., Lu M., Sun Y., Yeo K. S., (2019), Design of reconfigurable dB-linear variable-gain amplifier and switchable-order Gm-C filter in 65-nm CMOS technology. IEEE Transact. Microwave Theory and Techniq. 67: 5148-5158.
https://doi.org/10.1109/TMTT.2019.2947668