A low-power, wideband-tunable, nano-dimension based CMOS LC ladder filter designed using GmC

Document Type : Reasearch Paper

Authors

1 Department of Electronics and Communication Engineering, Integral University, Lucknow- India.

2 School of Electronics Engineering, VIT-AP University, Amaravathi, 522237, Andhra Pradesh, India.

Abstract

This paper proposed LC-ladder filter based on transconductance (GmC) with 130 nm RF CMOS process technology node at 1.2 V. Further, a seventh-order low-pass filter prototype and a sixth-order band-pass filter prototype have been invented to prove high-frequency functioning in a way that is relatively suited for s-parameters modelling. The low pass and band pass elements of an LC filter have been successfully implemented with GmC, and high-frequency operation has been achieved with compact passive components. To perform simulations and validate s-parameters in the intended frequency range of 2 GHz to 6 GHz, an RF-simulation platform (ADS from Keysight) has been utilised. The 8-bit capacitor-bank array used in this device allows the wideband adjustable function to be controlled by a digital or analogue signal from the external control. Due to the current mode multi-port GmC operation, an average selectivity with Q in the range of 27 to 39 has been achieved at 4.3mW, while maintaining low power consumption. By selecting the appropriate Gm and capacitive sizes for the cap-bank, it was feasible to achieve the broad operation required in the existing wireless range (2GHz-6GHz). SPICE and RF (s-parameter, harmonic balancer) simulations in ADS have been used in combination to examine the frequency response and noise performance of the proposed structure. When compared to state-of-the-art-work, the suggested Low power tunable filter stands out because to its improved frequency range, low supply voltage, better value of noise performance, and low power dissipation, which will be useful for complex analogue circuit design.

Keywords

Main Subjects


1   Rezaei F., (2021), 0.3 V Tunable OTA and Gm-C Filter in 0.13 µm CMOS. Scientia Iranica. 28: 3333-3341.
https://doi.org/10.24200/sci.2019.5452.1278
2   Nwadiugwu W. P., Kim D. S., (2022), Reconfigurable physical resource block using novel-beamforming filter circuit for LTE-Based cell-edge terminals. IEEE Transact. Computer-Aided Design of Integ. Circuits and Systems 41: 5131-5135.
https://doi.org/10.1109/TCAD.2022.3146847
3   Gupta P., Jana S. K., (2022), Design of a configurable third-order G m-C filter using QFG and BD-QFG MOS-based OTA for fast locking speed PLL. J. Circuits, Systems and Computers. 2350040.
https://doi.org/10.1142/S0218126623500408
4   Ryynanen J., Hotti M., Saari V., Jussila J., Malinen A., Sumanen L., Halonen K. A., (2006), WCDMA multicarrier receiver for base-station applications. IEEE J. Solid-State Circuits. 41: 1542-1550.
https://doi.org/10.1109/JSSC.2006.873924
5   Saari, V, (2006), A 10 MHz channel-select filter for WCDMA multicarrier base-station applications, in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Island of Kos, Greece, 055- 1058.
6   Kaltiokallio M., Lindfors S., Saari V., Ryynanen J., (2007), Design of precise gain GmC-leapfrog filters. IEEE Int. Symp. Circuits and Systems. 3534-3537.
https://doi.org/10.1109/ISCAS.2007.378445
7   Kaltiokallio M., Saari V., Rapinoja T., Stadius K., Ryynanen J., Lindfors S., Halonen K., (2008), A WiMedia UWB receiver with a synthesizer. In IEEE ESSCIRC-34th Europ. Solid-State Circuits Conf. 330-333.
https://doi.org/10.1109/ESSCIRC.2008.4681859
8   Giannini V., Craninckx J., D'amico S., Baschirotto A., (2007), Flexible baseband analog circuits for software-defined radio front-ends. IEEE J. Solid-State Circuits. 42: 1501-1512.
https://doi.org/10.1109/JSSC.2007.899103
9   Kitsunezuka M., Hori S., Maeda T., (2009), A widely-tunable, reconfigurable CMOS analog baseband IC for software-defined radio. IEEE J. Solid-State Circuits. 44: 2496-2502.
https://doi.org/10.1109/JSSC.2009.2023275
10   Wang Y., Ye L., Liao H., Huang R., Wang Y., (2014), Highly reconfigurable analog baseband for multistandard wireless receivers in 65-nm CMOS. IEEE Transact. Circuits and Systems II: Express Briefs. 62: 296-300.
https://doi.org/10.1109/TCSII.2014.2368975
11   Lo T. Y., Hung C. C., Ismail M., (2009), A wide tuning range G $ _ {\rm m} $-C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE J. Solid-State Circuit. 44: 2515-2524.
https://doi.org/10.1109/JSSC.2009.2023154
12   Li J., Parlak M., Mukai H., Matsuo M., Buckwalter J. F., (2014), A reconfigurable 50-Mb/s-1 Gb/s pulse compression radar signal processor with offset calibration in 90-nm CMOS. IEEE Transact. Microwave Theory and Techniq. 63: 266-278.
https://doi.org/10.1109/TMTT.2014.2375177
13   Kitsunezuka M., Tokairin T., Maeda T., Fukaishi M., (2011), A low-IF/zero-IF reconfigurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE J. Solid-State Circuit. 46: 572-582.
https://doi.org/10.1109/JSSC.2010.2102510
14   Liu H., Zhu X., Lu M., Yeo K. S., (2019), Design of a voltage-controlled programmable-gain amplifier in 65-nm CMOS technology. IEEE MTT-S Int. Microwave Symp. (IMS). 87-90.
https://doi.org/10.1109/MWSYM.2019.8700865
15   Solaymanpour A., Reyhani S., (2022), Design of tunable low-power band-stop filter for elimination of 50 Hz power-line noise. J. Applied Res. Elect. Eng. 1: 198-202.
16   Elamien M. B., Maundy B. J., Elwakil A. S., Belostotski L., (2022), Second-order cascode-based filters. Integration. 84: 111-121.
https://doi.org/10.1016/j.vlsi.2021.12.009
17   Acosta L., Jiménez M., Carvajal R. G., Lopez-Martin A. J., Ramirez-Angulo J., (2009), Highly linear tunable CMOS Gm-C lowpass filter. IEEE Transact. Circuits and Systems I: Regular Papers. 56: 2145-2158.
https://doi.org/10.1109/TCSI.2008.2012218
18   Thanachayanont A., Payne A., (2000), CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proceed.-Circuits, Devices and Systems. 147: 42-48.
https://doi.org/10.1049/ip-cds:20000053
19   Van Valkenburg M. E., Shaumann R., (2001), Design of analog filters. Oxford University Press, Oxford, UK.
20   Verma R. K., Yadava R. L., Balodi D., (2022), An insect-feed on-chip frequency reconfigurable patch antenna design with high tuning efficiency and compatible radome structure for broadband wireless applications. Scientia Iranica. 29: 3304-3316.
21   Khan I. U., Balodi D., Misra N. K., (2022), Low power LC-quadrature VCO with superior phase noise performance in 0.13 µm RF-CMOS process for modern WLAN application. Circuits, Systems, and Signal Processing. 41: 2522-2540.
https://doi.org/10.1007/s00034-021-01921-4
22   Khan Z. H., Kumar S., Balodi D., (2023), A Low leakage down-conversion K-Band MIXER using current-reuse double-balanced architecture in 130-nm CMOS process for modern RF applications. Int. J. Comput. Digital Systems. 13: 17-25.
https://doi.org/10.12785/ijcds/130102
23   Toumazou C., Moschytz G. S., Gilbert B., (Eds.), (2004), Trade-offs in analog circuit design: the designer's companion. Springer Science & Business Media.
24   Nauta B., (1991), Analog CMOS filters for very high frequencies. Ph.D. Thesis, Twente Universiteit, Enschede, The Netherlands.
25   Gee W.A., (2005), CMOS integrated LC Q-enhanced RF filters for wireless receivers. Ph.D. Thesis, ECE, GATECH, Atlanta, GA, USA.
26   Nauta B. A., (1992), CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits. 2: 142-153.
https://doi.org/10.1109/4.127337
27   Balodi D., Verma A., Paravastu A. G., (2020), Low power LC-voltage controlled oscillator with− 140 dBc/Hz@ 1 MHz offset using on-chip inductor design in 0.13 µm RF-CMOS process for S-Band application. Circuit World. 46: 32-41.
https://doi.org/10.1108/CW-03-2019-0023
28   Balodi D., Verma A., Paravastu A. G., (2020), Ultra-wideband quadrature LC-VCO using capacitor-bank and backgate topology with on-chip spirally stacked inductor in 0.13 μm RF-CMOS process covering S-C bands. Microelectronics J. 99: 104727.
https://doi.org/10.1016/j.mejo.2020.104727
29   Liu H., Zhu X., Lu M., Sun Y., Yeo K. S., (2019), Design of reconfigurable dB-linear variable-gain amplifier and switchable-order Gm-C filter in 65-nm CMOS technology. IEEE Transact. Microwave Theory and Techniq. 67: 5148-5158.
https://doi.org/10.1109/TMTT.2019.2947668